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Abstract—The production of sports highlight packages
summarizing a game’s most exciting moments is an es-
sential task for broadcast media. Yet, it requires labor-
intensive video editing. We propose a novel approach
for auto-curating sports highlights, and demonstrate it to
create a first of a kind, real-world system for the editorial
aid of golf and tennis highlight reels. Our method fuses
information from the players’ reactions (action recognition
such as high-fives and fist pumps), players’ expressions
(aggressive, tense, smiling and neutral), spectators (crowd
cheering), commentator (tone of the voice and word anal-
ysis) and game analytics to determine the most interesting
moments of a game. We accurately identify the start and
end frames of key shot highlights with additional metadata,
such as the player’s name and the hole number, or analysts
input allowing personalized content summarization and
retrieval. In addition, we introduce new techniques for
learning our classifiers with reduced manual training
data annotation by exploiting the correlation of different
modalities. Our work has been demonstrated at a major
golf tournament (2017 Masters) and two major interna-
tional tennis tournaments (2017 Wimbledon and US Open),
successfully extracting highlights through the course of
the sporting events [1–3]. 54% of the clips selected by
our system overlapped with the official highlights reels for
the 2017 Masters. Furthermore, user studies showed that
people found that 90% of the non-overlapping ones where
of the same quality of the official clips for 2017 Masters,
while the automatic selection of clips for highlights of
2017 Wimbledon and 2017 US Open agreed with human
preferences 80% and 84.2% of the time, respectively.

I. INTRODUCTION

The tremendous growth of video data has resulted in
a significant demand for tools that can accelerate and
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Fig. 1. The H5 system dashboard for auto-curation of sports
highlights. Highlights are identified in near real-time (shown in the
right panel) with an associated excitement level score. The user can
click on the icons in the right panel to play the associated video in
the center, along with the scores for different excitement measures.

simplify the production of sports highlight packages for
more effective browsing, searching, and content summa-
rization. In a major professional golf tournament such as
Masters, for example, with 90 golfers playing multiple
rounds over four days, video from every tee, every
hole and multiple camera angles can quickly add up to
hundreds of hours of footage. Wimbledon, the oldest
tennis tournament, hosts around 250 singles matches
alone over the course of 13 days again producing several
hundreds of hours of video. Yet, most of the process for
producing highlight reels in those tournaments is still
manual, labor-intensive, and not scalable.

In this paper, we present a novel approach for auto-
curating sports highlights, showcasing its application for
golf (2017 Masters) and tennis (2017 Wimbledon and
US Open). Our approach combines information from the
player, spectators, and the commentator to determine a
game’s most exciting moments. We measure the excite-
ment level of video segments based on the following
main multimodal markers:

• Player reaction: visual action recognition of
player’s celebration (such as high fives or fist
pumps) and facial expression recognition;

• Spectators: audio measurement of crowd cheers;
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• Commentator: excitement measure based on the
commentator’s tone of the voice, as well as exciting
words or expressions used, such as “beautiful shot”.

For golf, these indicators are used along with the
detection of TV graphics (e.g., lower third banners) and
shot-boundary detection to accurately identify the start
and end frames of key shot highlights with an overall
excitement score. For tennis, the start and end points for
an exemplar highlight shot can be accurately determined
based on input from court-side statisticians and analysts
who actively annotate tennis matches in real time. Video
segments are then added to an interactive dashboard
for quick review and retrieval by a video editor or
broadcast producer, speeding up the process by which
those highlights can then be shared with fans eager to
see the latest action. Figure 1 shows the interface of our
system, called High-Five (Highlights From Intelligent
Video Engine), H5 in short.

The first prototype of IBM H5 [15, 20] was de-
ployed at the 2017 Masters golf tournament, extracting
highlights live from multiple video streams over the
course of four days. Based on its success, H5 was
further adapted to tennis content and employed during
the 2017 Wimbledon and US Open tennis tournaments.
This adapted H5 prototype introduced the use of player
expression: expression on the face of the tennis player
(i.e. aggressive, tense, smiling, neutral) to improve the
player’s reaction marker. Based on the observation that
tennis commentary tends to be less colorful, quite to
the point, and rarely excited in tone, the tennis H5
prototype did not employ commentator based markers.
The system was successfully employed as the official
highlights provider for the Wimbledon and US Open
tennis tournaments in 2017.

Besides incorporating multimodal (audio, visual, text)
and multi-source (crowd audio, commentator speech,
player body, player face, overlaid text, speech text)
information for highlights detection, we also exploit
how one modality can guide the learning of another
modality, with the goal of reducing the cost of manual
training data annotation. In particular, we show that we
can use TV graphics and OCR as a proxy to build
rich feature representations for golf player recognition
from unlabeled videos, without requiring costly training
data annotation. Our audio-based classifiers also rely on
feature representations learned from unlabeled video [5],
and are used to constrain the training data collection of
other modalities (e.g., we use the crowd cheer detector
to select training data for player reaction recognition).

Personalized highlight extraction and retrieval is an-
other unique feature of our system. In golf, by leveraging
TV graphics and OCR, our method automatically gathers

information about the golf player’s name and the hole
number. This metadata is matched with relevant highlight
segments, enabling searches like “show me all highlights
of player X at hole Y during the tournament” and
personalized highlights generation based on a viewer’s
favorite players. For tennis, information about players
is extracted by meta-data provided by analysts and
court-side statisticians, thus allowing the same type of
personalization when combined with the analyzed video.

The key contributions of our work are listed below:
• We present a first-of-kind system for automati-

cally extracting sport highlights by uniquely fusing
multimodal excitement measures from the player,
spectators, and commentator. In addition, by either
automatically extracting metadata via TV graphics
and OCR or obtaining it from court-side statisti-
cians, we allow personalized highlight retrieval or
alerts based on player name, hole or field number,
location, and time.

• We introduce novel techniques for learning our mul-
timodal classifiers without requiring costly manual
training data annotation. In particular, we build
rich feature representations for player recognition
without manually annotated training examples.

• We provide an extensive evaluation of our work,
showing the importance of each component in our
multimodal approach through ablation studies. We
compare our results with professionally curated golf
highlights. We also provide an extensive user study
comparing highlights automatically produced of our
H5 system to human preferences by employing
Amazon Mechanical Turk, for both golf and tennis.

Our system was successfully demonstrated and deployed
at major international golf and tennis tournaments in
2017, extracting highlights from multiple live channels
during the course of the tournaments [1–3].

II. RELATED WORK

Video Summarization. There is a long history of
research on video summarization [18, 25, 42], which
aims at producing short videos or keyframes that sum-
marize the main content of long full-length videos, by
looking at elminating redundancy either at signal level
(feature dimensionality reduction [41]) or in semantic
content [42]. Our work also aims at summarizing video
content, but instead of optimizing for representative-
ness and diversity, as traditional video summarization
methods do, our goal is to find highlights or exciting
moments in the videos. A few recent methods address
the problem of highlight detection in consumer videos
[31, 38, 39]. Instead our focus is on sports videos,
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Fig. 2. Our approach consists of applying multimodal (video, audio, text) marker detectors to measure the excitement levels of the player,
spectators, and commentator in video segment proposals. The start/end frames of key shot highlights are accurately identified based on these
markers, along with the detection of TV graphics (when available as in golf) and visual shot boundaries, or information from court-side
statisticians. The output highlight segments are associated with an overall excitement score, as well as additional metadata about the video
segment such as the player name, hole number and shot information in golf, or match point information in tennis.

which offer more structure and objective metrics than
unconstrained consumer videos.

Automatic Trailer Generation. Another sub-area of
video summarization involving multimodal video analy-
sis that goes beyond content recognition, and focusing
instead on affective responses evoked by the video,
is movie trailer generation [9, 11, 37]. For example,
Evangelopoulos et al. [9] model and combine audio,
visual and textual saliency to select the most relevant
scenes in a movie. In this space, works focus on detecting
content with the highest emotional impact based on
movie genre. For instance, in horror movies scenes
evoking feelings of suspense or fear are important [29].
In our domain of interest, on the other hand, only positive
emotions connected to excitement are relevant. Further-
more, differently from this line of research, the focus
of our work is on identifying and measuring subjects
reactions (players, crowd, and commentator) directly in
the video stream, rather than inferring reactions which
are supposed to be evoked by inspected content which
is deemed as “impressive” [11].

Sports Highlights Generation. Several methods have
been proposed to automatically extract highlights from
sports videos based on audio and visual cues. Example
approaches include the analysis of replays [10, 12, 44],
crowd cheering [6, 36], motion features [35], and closed
captioning [40]. More recently, Bettadapura et al. [7]
used contextual cues from the environment to understand
the excitement levels within a basketball game. Tang
and Boring [32] proposed to automatically produce high-
lights by analyzing social media services such as twitter.
Decroos et al. [8] developed a method for forecasting
sports highlights to achieve more effective coverage of
multiple games happening at the same time. Different

from existing methods, our proposed approach offers a
unique combination of excitement measures extracted
from live video streams to produce highlights, including
information from the spectators, the commentator, and
the player reaction. As such, our system incorporates
and combines most of the information employed by
previous works (audio, visual, text). It could also be
easily extended to integrate other sources of attention
or excitement, such as social media feeds or production
cues (replays, closed captions, etc.). In addition, we en-
able personalized highlight generation or retrieval based
on a viewer‘s favorite players.

Self-Supervised Learning. In recent years, there has
been significant interest in methods that learn deep neural
network classifiers without requiring a large amount
of manually annotated training examples. In particular,
self-supervised learning approaches rely on auxiliary
tasks for feature learning, leveraging sources of supervi-
sion that are usually available “for free” and in large
quantities to regularize deep neural network models.
Examples of auxiliary tasks include the prediction of
ego-motion [4, 13], location and weather [34], spatial
context or patch layout [22, 24], image colorization [43],
and temporal coherency [21]. Aytar et al. [5] explored
the natural synchronization between vision and sound to
learn an acoustic representation from unlabeled video.
We leverage this work to build audio models for crowd
cheering and commentator excitement using few training
examples, and use those classifiers to constrain the train-
ing data collection for player reaction recognition. More
interestingly, we exploit the detection of TV graphics as
a free supervisory signal to learn feature representations
for player recognition from unlabeled video.
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III. TECHNICAL APPROACH

A. Framework

Our framework is illustrated in Figure 2. Given an
input video feed, we extract in parallel multimodal mark-
ers of potential interest: player action of celebration and
facial expression (detected by visual classifiers), crowd
cheer (with an audio classifier), commentator excitement
(detected by a combination of an audio classifier and a
salient keywords extractor applied after a speech-to-text
component), and game analyst input information when
available (text based metadata). The start and end of a
potential highlight clip are determined via analyst input
when it is available. In the absence of such input, the
start of a highlight is determined by identifying graphic
content overlaid to the video feed signifying the start
of a shot. Similarly, the end of a highlight segment is
identified with visual shot boundary detection, applied in
a window of few seconds after the occurrence of the last
excitement marker. Additionally, by applying an OCR
engine to the graphic, we can recognize the name of the
player involved as well as additional metadata such as the
hole number, nature of the shot, etc. Finally we compute
a combined excitement score for the segment proposal
based on a combination of the individual markers. In the
following we describe each component in detail.

B. Audio-based Markers Detection

1) Crowd Cheer Detection: Crowd cheering is per-
haps the most veritable form of approval of a player’s
shot within the context of any sport. Cheers almost al-
ways accompany important shots. Most critically, crowd
cheer can point to the fact that an great point or shot
was just played (indicating the end of a highlight).
Another important audio marker is excitement in the
commentators’ tone while describing a shot. Together
those two audio markers play a key role in determining
the position and excitement level of a potential highlight
clip. We leverage SoundNet [5] to construct audio-
based classifiers for crowd-cheering and commentator
tone excitement. Soundnet uses a deep 1-D convolutional
neural network architecture to learn representations of
environmental sounds from nearly 2 million unlabeled
videos. The classes learned by SoundNet are objects
and scenes, and they do not include crowd cheering
or clapping, not excitement tone in a persons voice.
Therefore a domain adaption step needs to be performed
in order to use such powerful representation for our
purposes. Instead of fine-tuning two SoundNet models,
one for the specific task of crowd cheering classification
and one for commentator excitement tone classification,
we chose to employ the same SoundNet deep features

as basis to train a linear SVM model for each of the two
markers. We opted for this approach for two reasons.
The first is the relatively limited amount of training
data available for both tasks. We wanted to limit the
amount of annotation effort needed to build efficient
and effective models. In practice, when dealing with
medium or small scale training data, the literature is
not conclusive on whether fine-tuning a deep network
is better than learning another model (such as SVM) on
top of deep features [26]. The second is efficiency. While
one could argue that a multi-task fine-tuned network
could have achieved the same result, we picked a simpler
solution. We extract features from the conv-5 layer in
SoundNet to represent 6 seconds audio segments. The
choice of the conv-5 layer is based upon experiments
and superior results reported in [5]. The dimensionality
of the feature is 17,152. We then learn a linear SVM
model atop the deep features to classify crowd cheer.

We adopt an iterative refinement bootstrapping
methodology to construct our audio based classifiers.
We learn an initial classifier with relatively few audio
snippets (28 positives and 57 negatives in the first round
of training) and then perform a few rounds of boot-
strapping on a distinct set. This procedure is repeated
to improve the accuracy at each iteration. Cheer samples
from 2016 Masters replay videos as well as examples
of cheer obtained from YouTube were used as positive
training data. For negative examples, we used audio
tracks containing regular speech, music, and other kinds
of non-cheer sounds found in Masters replays. In total
our final training set consisted of 156 positive and 193
negative samples (6 seconds each). The leave-one-out
cross validation accuracy on the training set was 99.4%.

2) Commentator Excitement Detection: We propose
a novel commentator excitement measure based on a
combination of voice tone and speech-to-text-analysis.

Tone-based: Besides recognizing crowd cheer, we
employ the deep Soundnet audio features to model
excitement in commentators’ tone. As above, we em-
ploy a linear SVM classifier for modeling. For negative
examples, we use audio tracks containing regular speech,
music, regular cheer (without commentator excitement)
and other kinds of sounds which do not have an excited
commentator. In total, the training set for audio based
commentator excitement recognition consisted of 131
positive and 217 negative samples. The leave-one-out
cross validation accuracy on the training set was 81.3%.

Text-based: While tone can say a lot about how
excited the commentator is while describing a shot,
excitement level can also be gauged from another source,
that is, the expressions used. We created a dictionary
of 60 expressions (words and phrases) indicative of
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Fig. 3. Commentator excitement score computation based on (i) audio tone analysis and (ii) speech to text analysis.

excitement (e.g. “great shot”, “fantastic”) and assign to
each of them excitement scores ranging from 0 and 1.
We use a speech to text service1 to obtain a transcript of
commentators’ speech and create an excitement score as
an aggregate of scores of individual expressions in it.

Finally we average the tone-based and text-based
scores to obtain the overall level of excitement of the
commentator, as exemplified in Figure 3.

C. Visual Marker Detection

1) Player Reaction: Understanding the reaction of a
player is another important cue to determine an inter-
esting moment of a game. In our work, we train an
action recognizer to detect a player celebrating. To the
best of our knowledge, measuring excitement from the
player reaction for highlight extraction has not been
explored in previous work. We adopt two strategies to
reduce the cost of training data collection and annotation
for action recognition. First, we use our audio-based
classifiers (crowd cheer and commentator excitement)
at a low threshold to select a subset of video segments
for annotation, as in most cases the player celebration
is accompanied by crowd cheer and/or commentator
excitement. Second, inspired by [17], we use still images
which are much easier to annotate and allow training
with less computational resources compared to video-
based classifiers. Figure 4 shows examples of images
used to train our model. At test time, the classifier
is applied at every frame and the scores aggregated
for the highlight segment. Classifiers to detect player’s
celebration are based upon the VGG-16 and the ResNet-
50 architectures pretrained on ImageNet. Since ImageNet
does not contain categories describing a person cele-
brating, a fine-tuning procedure for our specific domain
is needed. We collect Positive training examples for
the fine-tuning from 2016 Masters, Wimbledon, and US
Open videos, and also from the web. Negative examples

1https://www.ibm.com/watson/developercloud/speech-to-text.html

Fig. 4. Examples of still images used to train our player celebratory
action recognition model.

are randomly sampled from the aforementioned videos.
Similarly to the audio models, multiple rounds of boot-
strapping were used to train the model. Details of the
training procedure are described in the Section V-B.

2) Facial Expression: Facial expression carries valu-
able information that can augment or correct predictions
from the player reaction models. For example, a tennis
player might be raising his arm to collect a ball instead
of celebrating a point, thus confusing the player reaction
model. In this case, detecting a neutral facial expression
can help rejecting a false positive instance.

Training data to build a facial expression classifier
was collected by extracting faces from the action cel-
ebration training images, using a SSD detector [16].
We retrieved “face” bounding boxes when detected,
or “head-shoulders” ones alternatively. When multiple
boxes were detected, we selected only the largest one.
We also ignored poor examples due to occlusion, rear-
angle, or partial visibility. The extracted faces were then
categorized into four types of expression: aggressive,
tense, smiling, and neutral, as shown in Figure 5. The
first three are associated with celebration, whereas the
last one is considered as non-celebratory. The facial
expression classifier was trained by fine-tuning a VGG-
face [23] model on a manually labeled dataset of tennis
players faces.
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3) TV Graphics, OCR, and Shot-boundaries: In pro-
fessional golf tournament broadcasts, a golf swing is
generally preceded by a TV graphics with the name of
the player just about to hit the golf ball and other in-
formation about the shot. The detection of such markers
is straightforward, as they appear in specific locations
of the image, and have distinct colors. We check for
such colors in the vicinity of pre-defined image locations
(which are fixed across all broadcasting channels) to
determine the TV graphics bounding box. One could
use a more general approach by training a TV graphics
detector (for example via Faster-RCNN [27] or SSD
[16]), however this was beyond the scope of this work.
We apply OCR (using the Tesseract engine [30]) within
the detected region to extract metadata such as the name
of the player and the hole number. This information is
associated with the detected highlights, allowing per-
sonalized queries and highlight generation based on a
viewers favorite players. We then use standard shot-
boundary detection based on color histograms as a visual
marker to determine the end of a highlight clip.

D. Game Analytics

In tennis not every point, for how exciting it may
be, has equal relevance within a game. For example
match points and set points are more valuable than
others, and business rules require them to be included
in official highlights packages. During the tournaments,
we received live information about the points from statis-
ticians positioned on the side of the court, and compiled
it into a single analytics score in the following manner,
which was devised following expert advice concerning
the significance and difficulty of each item:

• -0.1 for a point won due to unforced error or rally
count smaller than 3

• +0.1 for a point won due to positive play, volley
winner, smash winner, match point, break point, or
rally count greater than 5

• +0.20 for a point won due to forced error, player
movement detected, or rally count greater than 10

• +0.25 for a game winning point
where positive play means a point won thanks to a
player’s active effort, not an opponent’s mistake. Player
movement signifies that one player moved 25 meters
more than the opponent. The sum of values for any given
point was then normalized in the range 0 to 1.

E. Excitement Scores Fusion

For for any given potential highlight clip x, we per-
form late fusion of the excitement scores En(x) pro-
duced by each of the N marker classifiers. Specifically,

Fig. 5. Examples of different expressions used to train the facial
expression model.

we aggregate (via the max operation) positive scores for
each of the markers within the inspected time-window
(usually of 15-20 seconds). Each individual score is then
registered in the range between 0 and 1 via sigmoid
normalization, and the final fusion is computed as a
weighted linear sum:

F (x) =

N∑
n=1

wnEn(x) (1)

where n refers to cheer, commentator, player action
and game analytics (when available). The weights wn

for each component are learned via cross-validation on
data from the previous year’s tournaments. Crowd cheer,
commentator excitement (combining audio and text),
player reaction and game analytics components weights
were set to 0.61, 0.26, 0.13 and 0 respectively for
Masters. For Wimbledon and US Open they were learned
as 0.6, 0, 0.1, and 0.3 respectively. In Section V-C1
we compare the benefit of learning the weights versus
a Naive-Fusion approach employing equal weighting
across components.

F. Highlight Detection

A highlight is identified as a play or shot that receives
a high overall score from the fusion score combining
the multimodal markers ones. Besides measuring marker
response, it is also important to determine the start
and end positions of a highlight. This step is handled
differently for the two use cases of golf and tennis,
since the inputs to the system were different. We will
go through them individually.

Golf: in this case, the input to the system are the live
video streams of the 2017 Masters. Figure 6 illustrates
then how we incorporate multimodal markers to identify
segments as potential highlights and assign excitement
scores to them. The system starts by generating seg-
ment proposals based on the crowd cheering marker.
Specifically, crowd cheering detection is performed on
a continuous segment of the stream and positive scores
are tapped to point to potentially important cheers in
audio. Adjacent 6 second segments with positive scores
are merged to mark the end of a bout of contiguous
crowd cheer. Each distinct cheer marker is then evaluated
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Fig. 6. Highlight clip start and end frames selection pipeline for the
golf video streams.

as a potential candidate for a highlight using presence
of a TV graphics marker containing a player name and
hole number within a preset duration threshold (set at
80 seconds). The beginning of the highlight is set as 5
seconds before the appearance of TV graphics marker.
In order to determine the end of the clip we perform shot
boundary detection in a 5 second video segment starting
from the end of cheer marker. If a shot boundary is
detected, the end of the segment is set at the shot change
point. Segments thus obtained constitute valid highlight
segment proposals for the system.

Tennis: As opposed to the golf Masters, Wimbledon
and US Open tennis matches are actively annotated by
analysts in a live fashion. As a consequence, the start
and end times of each play can be accurately determined
based on such provided information. Therefore the mul-
timodal marker classification system receives video clips
filtered using analyst information as potential highlight
candidates and ranks them.

TV graphics detection, shot boundary detection and
OCR could be applied to tennis in the same way as
they were applied to golf. As our system is motivated
by application to real world production needs, we did
not investigate the clip detection and cut approach to the
tennis videos, since the clips and the player information
were already provided to us during the tennis tourna-
ments. However, we believe it would apply seamlessly,
as the TV Graphics are easily identifiable and OCR could
be employed to identify player names and keep track of
the points. The only needed addition would be that of
a player serving detection marker, since the start of a
tennis point clip corresponds to one player serving. That
would require training a specific classifier, which could
be done similarly to the player celebratory reaction one,
without requiring a big effort.

For both golf and tennis use cases, highlight clips
are displayed in the system dashboard as shown in Fig-
ure 1 labeled with individual marker scores (normalized
between 0 and 1) as well as a combined excitement
score which is computed as a linear combination of the
multimodal marker scores.

IV. SELF-SUPERVISED PLAYER RECOGNITION

Automatic player detection and recognition can be a
very powerful tool for generating personalized highlights
when graphics are not available, as well as to perform
analysis outside of the event broadcast itself. It could
for example enable to estimate the presence of a player
in social media posts by recognizing his face. The task
is however quite challenging. First, there is a large
variations in pose, illumination, resolution, occlusion
(hats, sunglasses) and facial expressions, even for the
same player, as visible in Figure 11. Second, inter-player
differences are limited, as many players wear extremely
similar outfits, in particular hats in golf, which occlude
or obscure part of their face. Finally, a robust face
recognition model requires large quantities of labeled
data in order to achieve high levels of accuracy, which is
often difficult to obtain and labor intensive to annotate.
We propose to alleviate such limitations by exploiting
the information provided by other modalities of the video
content, specifically the overlaid graphics containing the
players name. This allows us to generate a large set of
training examples for each player, which can be used to
train a face recognition classifier, or learn powerful face
descriptors. In the following we describe the approach
employed specifically for the golf tournament data, but
it could be easily adapted to other sports.

We start by detecting faces within a temporal window
after a graphic with a player name is found, using a
Faster-RCNN detector [27]. The assumption is that in
the segment after the name of a player is displayed, his
face will be visible multiple times in the video feed.
Not all detected faces in that time window are going
to represent the player of interest. We therefore per-
form outliers removal, using geometrical and clustering
constraints. We assume the distribution of all detected
faces to be bi-modal, with the largest cluster containing
faces of the player of interest. Faces that are too small
are discarded, and faces in a central position of the
frame are given preference. Each face region is expanded
by 40% and rescaled to 224x224 pixels. Furthermore,
only a maximum of one face per frame can belong
to a given player. Given all the face candidates for a
given player, we perform two-class k-means clustering
on top of fc7 features extracted from a VGG Face
network [23], and keep only the faces belonging to the
largest cluster while respecting the geometric constraints
to be the representative examples of the player’s face.
This process, working without supervision, allows us to
collect a large quantity of training images for each player.
We can then train a player face recognition model, which
in our case consists of a VGG Face Network fine-
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tuned by adding a softmax layer with one dimension
per player. Figure 11(b) shows an example subset of
training faces automatically collected for Sergio Garcia
from the 2016 Masters broadcast. The system was able
to collect hundreds of images with a large variety of
pose and expressions for the same player. Bordered in
red are highlighted two noisy examples. While the purity
of the training clusters is not perfect, as we will show
in the experiments of Section V-D it still allowed to
learn a robust classifier with no explicit supervision.
This confirms recent results in deep learning modeling,
which has been proven to being robust to noise if a large
quantity of training data is provided, as demonstrated in
recent results for example by Veit et al. on OpenImages
[33] or recently achieved top ImageNet performance
using noisy data from image tags by Mahajan et al. [19].

V. EXPERIMENTS

A. Experimental Setting

We evaluated our system in three real world champi-
onships, namely the 2017 Masters, 2017 Wimbledon, and
2017 US Open tournaments. For the 2017 Masters, we
analyzed in near real-time the content of four channels
broadcasting simultaneously over the course of four
consecutive days, from April 6th to April 9th, for a
total of 124 hours of content2. Our system produced 741
highlights over all channels and days. The system ran on
a Redhat Linux box with two K40 GPUs. We extracted
frames directly from the video stream at a rate of 1fps
and audio in 6 seconds segments encoded as 16bit PCM
at rate 22,050 kHz. The cheer detector and commentator
excitement ran in real time (1 second to process one
second of content), action detection took 0.05secs per
frame, graphics detection with OCR took 0.02secs per
frame. Speech-to-text was the only component slower
than real time, processing 6 seconds of content in 8
seconds, since we had to upload every audio chunk to
an API service. The 2017 Wimbledon and US Open
system ran on two Ubuntu nodes with four K80 GPUs
each, providing a total of 16 stream services to process
candidate highliht clips during the tournaments. Videos
were chunked in 10 seconds clips and analyzed in less
than 2.5 seconds through our service APIs. Frames
and audio extracted from each video were distributed
to several components for crowd cheering detection,
action recognition, expression recognition, and overall
aggregation.

In the following we report experiments conducted after
the events to quantitatively evaluate the performance of

2Video replays are publicly available at http://www.masters.com/
en US/watch/ index.html

H5, both in terms of overall quality of the produced high-
lights as well as efficacy of its individual components.
All training was performed on content from the 2016
Masters, Wimbledon and US Open tournament videos
and from images downloaded from the web, while testing
was done on video data from the 2017 tournaments.

B. Individual Markers

We first present evaluation of individual markers as
performed on golf and tennis data.

1) Player Celebration Marker: The player celebration
classifier for 2017 Masters was trained with 574 positive
examples and 563 negative examples. The positive ex-
amples were sampled from 2016 Masters replay videos
and also from the web. The negative examples were
randomly sampled from the 2016 Masters videos. We
used the VGG-16 model [28], pre-trained on Imagenet as
our base model. The Caffe [14] deep learning library was
used to fine-tune the model to our data with stochastic
gradient descent, learning rate 0.001, momentum 0.9,
and weight decay 0.0005. We performed three rounds of
hard negative mining on 2016 Masters videos, obtaining
2,906 positive examples and 6,744 negative ones.

In a similar fashion, player celebration classifiers
for 2017 Wimbledon and US Open were trained using
samples from 2016 tournament video frames as well
as examples from the web including multiple rounds
of bootstrapping. The final training set for Wimble-
don consisted of 13,263 positive and 33,372 negatives
samples, augmented by random cropping and horizontal
flipping. Since the US open setting is quite different
from Wimbledon’s, we trained new celebration classifiers
for US Open using a training set consisting of 11,330
positive and 12,516 negative samples. The examples
from the web were reused from the Wimbledon training,
while new video frames were annotated specifically for
the US Open. We explored two deep architectures, VGG-
16 and ResNet-50 pre-trained on Masters data, and found
the ResNet model to work best.

We evaluated the player celebration models on a set
of clips randomly selected from each of the tournaments
and manually labeled. Table I reports the details of each
test set. The imbalance of positive and negative examples
reflects the actual distribution of data, since occurrences
of a player celebrating are relatively rare within a match.
Classification accuracies on 2017 Masters, Wimbledon,
and US Open data were 98.4%, 98.12% and 99.33%
respectively. Compared to VGG-16, the ResNet-50 mod-
els performed better on 2017 Wimbledon (AUC = 0.91
versus 0.87 for VGG) while they were equivalent for the
US Open (both AUC = 0.94). Because of the superior
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Event # clips # frames # positives # negatives
2017 Masters - 1,064 59 1,005

2017 Wimbledon 540 4,777 78 4,699
2017 US Open 510 8,963 52 8,911

TABLE I
DETAILS OF THE TEST SETS USED TO EVALUATE THE PLAYER

CELEBRATION ACTION RECOGNITION MODELS.

Event # sam-
ples

#aggres-
sive # tense # smil-

ing
# neu-
tral

2017 Masters 1,285 45 222 346 672
2017 Wimbledon 472 18 56 38 360
2017 US Open 1,129 25 171 44 889

TABLE II
DETAILS OF THE TEST SET USED TO EVALUATE PERFORMANCE OF

THE FACIAL EXPRESSION RECOGNITION MODELS.

performance of ResNet, we used those models in the
fusion phase. In Figure 7(a) we show the ROC curves of
the best models for the all three inspected tournaments.
We can observe that recognizing players celebrating
was easier in golf than in tennis. In fact, despite a
significantly smaller training dataset, the model performs
better. This is mostly due to false positives occurring in
tennis when players serve, catch a ball in their hand, or
pass a towel over their head. The high false positives rate
from the the player reaction models was one of the main
motivations to introduce a facial expression module.

2) Facial Expression Marker: The facial expression
marker was tested on faces extracted from the 2017
Wimbledon and US Open test set videos. While it was
not employed during the tournament, we also evaluated
this marker on the 2017 Masters data after the event.
As shown in the Table II, the expressions on the players
faces were at first manually labeled into four categories,
which we found to be most representative of the appear-
ance of the players from the 2016 tournaments. During
the 2017 Wimbledon however, we found that aggressive,
tense and smiling all correlated with players’ celebra-
tions. We therefore combined those facial expressions
with a linear fusion to generate an overall “excited”
score, which was compared against the neutral score
representing a lack of celebration. Figure 7(b) illustrates
the ROC curves of the facial expression marker using this
binary categorization. The Figure shows that the modules
performed reliably enough for both tennis tournaments,
with 2017 Wimbledon’s performance being better (AUC
of 0.81 for 2017 Wimbledon versus 0.75 for 2017 US
Open). Recognition accuracies are 82.42% and 82.23%,
respectively. The results for golf were worse, with AUC
of 0.71 and accuracy of 78.57%. While the performance
is not by itself perfect, it resulted in being acceptable

Event # samples # positives # negatives
2017 Masters 405 69 336

2017 Wimbledon 1,073 915 158
2017 US Open 1,564 627 937

TABLE III
DETAILS OF THE TEST SET USED TO EVALUATE PERFORMANCE OF

THE CROWD CHEERING RECOGNITION MODELS.

Event # samples # positives # negatives
2017 Masters 240 46 194

2017 Wimbledon 437 85 352
2017 US Open 423 111 312

TABLE IV
DETAILS OF THE TEST SET USED TO EVALUATE PERFORMANCE OF

THE COMMENTATOR TONE RECOGNITION MODELS.

since facial expressions were used to refine the results
given by the celebration action model.

3) Crowd Cheering Marker: Cheer samples from
2016 Masters and Wimbledon replay videos as well as
examples of cheer obtained from YouTube were used
in order to train the audio cheer classifier using a linear
SVM on top of deep features. For negative examples, we
used audio tracks containing regular speech, music, and
other non-cheer sounds found in Masters and Wimbledon
replays. In total our final training set consisted of 453
positive and 454 negative samples (6 seconds each). We
manually annotated random sets of six-seconds audio
clips from the 2017 Masters, Wimbledon and US Open
tournaments videos to evaluate the performance of the
model. Table III reports detailed numbers of test sets
and Figure 7(c) reports performance of the audio cheer
model. The resulting ROC curves are approximately sim-
ilar, with AUC of 0.9, 0.94 and 0.93 for 2017 Masters,
Wimbledon and US Open, respectively.

4) Commentator Tone Marker: In a fashion similar
to identifying crowd cheering samples, we created a
training set for commentator tone excitement marker
using 2016 Masters videos and several rounds of boot-
strapping. In total, the training set for audio based
commentator excitement recognition consisted of 131
positive and 217 negative samples. The model was
employed only for the golf Masters tournament, as the
tennis data we were provided as input did not contain
any useful commentary. We evaluated the commentator
tone model on randomly sampled audio snippets from the
2017 Masters tournament, and from Youtube videos of
past Wimbledon and US Open matches, as summarized
in Table IV. Each audio clip was sent to AMT for
evaluation by 5 different workers, who had to label it as
No speech (0), Softly spoken(1), Average Excitement(2),
Loud Excitement(3). Any clip with an average score of at
least 2 was considered as exciting, while the others were
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(a) Player Reaction
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(b) Facial Expression
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(c) Crowd Cheer
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(d) Commentator Tone

Fig. 7. ROC curves for different excitement markers on the test clips from the 2017 Masters, Wimbledon and US Open tournaments.

Element Total Number Precision Recall
Words 7,663 0.9916 0.9893

Characters 29,016 0.9846 0.9840
TABLE V

OCR PERFORMANCE IN TERMS OF WORDS AND CHARACTERS
RECOGNITION.

considered non-exciting. Figure 7(d) shows the ROC
curves of the model, with an AUC = 0.72, 0.83 and
0.82 for Masters, Wimbledon and US Open, respectively.
While the performance of this model is not as good as the
cheer classifier, it was reliable enough to be employed
in the live system during the Master tournament. It was
not used for the tennis ones.

5) Text OCR Marker: In order to evaluate the text
detection and OCR performance, we randomly selected
625 frames from the 4 channels during the first day of
the 2017 Masters tournament. For each of the frames, we
manually transcribed the ground truth text and compared
it to the outcome of the OCR engine. From the results
in Table V we observe that the system was able to
recognize the overlaid text very accurately. Overall, only
in 7 frames the name of the player was not properly
recognized, while the most common mistake (happened
60 times) was the confusion of the letter T with the letter
I in the ordinal numbers indicating the hole (for example,
15TH HOLE misspelled as 15YH HOLE). Precision and
Recall are computed as

Precision =
Ncor

Ngt
, Recallc =

Ncor

Nr
(2)

Ncor = Ngt − ED (sg, sr) (3)

where Ncor is the number of correctly recognized char-
acters, that is, the number Ngt of ground truth characters
minus the edit distance ED (sg, sr) between the ground
truth text sg and the text output from the system sr.

C. Highlights Detection

Evaluating the quality of sports highlights is a chal-
lenging task, since a clearly defined ground truth does

not exist. Similarly to previous works [7], we approached
this problem by comparing the clips automatically gener-
ated by our system to two human based references. The
first is a human evaluation and ranking of the clips that
we produced. The second is the collection of highlights
professionally produced by the official Masters curators
and published on their Twitter channel.

1) Human Evaluation of Highlights Ranking: In order
to determine the quality of the rankings produced by our
system, we conducted user studies on Amazon Mechani-
cal Turk. Workers were asked to evaluate the excitement
level of several clips randomly sampled from the ones
generated and scored by the H5 framework. We asked
each participant to assign a score to every clip in a scale
from 0 to 5, with 0 meaning a clip without any interesting
content and 5 being the most exciting shots. We then
averaged the scores of the users for each clip. Table VI
summarizes the number of clips and workers employed
for each tournament. We also asked each worker if they
were fans of the given sport, and on average we found
half of them being fans.

Specifically for 2017 Masters, a score of 1 had the
unique meaning of a highlight that is associated with the
wrong player, that is, a system mistake. The resulting
scores determined that 92.68% of the clips produced
by our system were legitimate highlights (scores 2 and
above), while 7.32% were mistakes.

We then compared the rankings of the clips according
to the scores of each individual component, as well as
their fusion, to the ranking obtained through the users
votes. The performance of each ranking was computed
at different depth k with the normalized discounted
cumulative gain (nDCG) metric, which is a standard
retrieval measure computed as follows

nDCG(k) =
1

Z

k∑
i=1

2reli − 1

log2(i+ 1)
(4)

where reli is the relevance score assigned by the users
to clip i and Z is a normalization factor ensuring
that the perfect ranking produces a nDCG score of 1.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMM.2018.2876046

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



1520-9210 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2018.2876046, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 11

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

nD
C

G

 

 

Commentator Excitement
Action
Cheer
NaiveFusion
Fusion

(a) 2017 Masters

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

nD
C

G

 

 

Expression
Action
Cheer
Analytics
RefinedAction
naiveFusion
Fusion

(b) 2017 Wimbledon
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(c) 2017 US Open
Fig. 8. nDCG computed at different ranks for the individual components as well as the Fusion.

In Figure 8 we present the nDCG at different ranks.
Fusion was obtained as a weighted sum of the nor-
malized scores from each component. We tested two
different fusion configurations: a Naive-Fusion using
equal weights, and the Fusion with weights optimized
through cross-validation on a separate training set (which
was used by the system during the tournaments), as
described in Section III-E. In all cases the system’s
Fusion outperforms the Naive one, confirming the benefit
of assigning different weights to different individual
components. For both 2017 Wimbledon and US Open,
the Refined Action obtained by adjusting the player
celebration score with the facial expression component
(increase if facial expression is “excited”, decrease if
the expression is neutral) correlated better than the
base Action one, confirming the benefit of introducing
the facial expression marker. In general, H5 produced
rankings which correlated more with human preferences
for Golf than for Tennis. For 2017 Masters (a) we notice
that all components but the Commentator Excitement
correctly identify the most exciting clip (at rank 1).
After that only the Action component assigns the highest
scores to the following top 5 clips. When considering
10 top clips or more, the benefit of combining multiple
modalities becomes apparent, as the Fusion nDCG curve
remains constantly higher than each individual marker.
Differently from 2017 Masters, for 2017 Wimbledon and
US Open the Fusion does not outperform individual
components. However it remains fundamental for the
system to generalize, as it is interesting to notice how for
different tournaments, different components correlated
most with human rankings. For Wimbledon (b) Cheer
was the best indicator for human excitement, whereas
for US Open (c) the game Analytics mattered the most.
In both cases the Fusion closely follows the performance
of the best individual marker.

2) Tennis A/B Testing: Besides the ranking of clips,
for Tennis we also wanted to determine whether the

Tournament Number
of Clips

Workers
per Clip

Total N.
Workers

% Fan
Workers

2017 Masters 120 3 3 33%
2017 Wimbledon 540 5 33 58%
2017 US Open 510 5 21 59%

TABLE VI
DISTRIBUTION OF CLIPS AND WORKERS USED TO EVALUATE

CLIPS RANKINGS FOR EACH TOURNAMENT.

selection made by the system about which clips should
go into the compiled highlights and which should be
instead discarded followed human preferences. Thus we
evaluated the clip selection process through another
Amazon Mechanical Turk experiment. In this case for
each tournament we randomly selected 500 pairs of
clips. In each pair both clips belonged to the same
game: one clip which had been selected to be part of
the highlights, and one clip which had been discarded.
We then presented each pair to the workers and asked
them to pick which clip in the pair was more exciting
and/or interesting. We also asked the workers to motivate
their choice among multiple options and to provide some
demographic information. Each pair was voted on by 15
workers, and a total of 234 unique users participated
in the study. From the results reported in Figure 9 (a)
and (b) we can observe how for both tournaments the
majority of voters picked the clips which were selected
by the system to be part of the highlights of a game
(blue curves) overwhelmingly over the non highlight
worthy ones (red curves). Naturally the fraction of clips
on which a larger number of users agrees decreases as
we move from 8 (the majority of voters) to to 15 (all
the voters), a trend clearly visible in the growth of the
grey curves representing an indecision. The distribution
of reasons for the choices is highly skewed toward how
exiting a clip was, as users paid less attentions to clip
clarity (tends to be very similar, as clips belong to the
same game), players scoring or significance of a point
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(a) 2017 Wimbledon Preferences (b) 2017 US Open Preferences

(c) 2017 Wimbledon Reasons (d) 2017 US Open Reasons
Fig. 9. Human preferences in AB tests for 2017 Wimbledon and US Open.

Fig. 10. A/B Tests users demographics information

withing a game. The detailed breakdown is presented in
Figure 9 (c) and (d). From the demographic information
collected in Figure 10 we can observe a quite even
distribution in gender, with a prevalence of young people
(18 to 29 years old) who mostly did not know the players
in the clips they voted on. This is consistent with the
reason the point was scored by the player I like better
being the least used in Figure 9 (c) and (d). Finally, it
seems that the majority of workers was not a tennis fan,
having watched less than 5 games in the past year.

3) Comparison with Official 2017 Masters Highlights:
The previous experiments confirmed the quality of the
identified highlights as perceived by potential users of the
system. We then compared H5 generated clips with high-
lights professionally created for 2017 Masters, Masters

Moments, available at their official Twitter page3. There
are a total of 116 highlight videos from the final day at
the 2017 Masters. Each one covers a player’s approach to
a certain hole (e.g. Daniel Berger, 13th hole) and usually
contains multiple shots taken to complete a particular
hole. In contrast each H5 highlight video is about a
specific shot at a particular hole for a given player. In
order to match the two sets of videos, we considered
just the player names and hole numbers and ignored
the shot numbers. After eliminating Masters Moments
outside of the four channels we covered live during the
tournament and for which there is no matching player
graphics marker, we obtained 90 Masters Moments.

In Table VII, we report Precision and Recall of match-
ing clips over the top 120 highlights produced by the
H5 Fusion system. We observe that approximately half
of the clips overlap with Masters Moments. This leaves
us with three sets of videos: one shared among the two
sets (a gold standard of sorts), one unique to Masters
Moments and one unique to H5. We observed that by
lowering thresholds on our markers detectors, we can
incorporate 90% of the Masters Moments by producing
more clips. Our system is therefore potentially capable
of producing almost all of the professionally produced
content. We also wanted to investigate the quality of
the clips which were discovered by the H5 system
beyond what the official Master’s channel produced.
Generation of highlights is a subjective task and may not

3https:// twitter.com/mastersmoments
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Depth 120 500
Precision 0.54 0.35

Recall 0.4 0.9
Matching Highlights Preference 0.57 -

Non-Matching Highlights Preference 0.33 -
Equivalent 0.10 -

TABLE VII
HIGHLIGHTS DETECTION PERFORMANCE. COMPARISON

BETWEEN THE TOP k (k = 120, 500) RETRIEVED CLIPS FROM H5
AND THE OFFICIAL 2017 MASTER’S TWITTER HIGHLIGHTS.

comprehensively cover every player and every shot at the
Masters. At the same time, some of the shots included in
the official highlights may not necessarily be great ones
but strategically important in some ways.

While our previous experiment was aimed at under-
standing the coverage of our system vis-a-vis official
2017 Masters highlights, we wondered if a golf afi-
cionado would find the remaining videos still interesting
(though not part of official highlights). We therefore
aimed an experiment at quantitatively comparing (a) H5
highlight clips that matched Masters Moments and (b)
H5 highlight clips that did not match Masters Moments
videos. In order to do so we selected the 40 most highly
ranked (by H5) videos from lists (a) and (b) respec-
tively and performed a user study using three human
participants familiar with golf. Participants were shown
pairs of videos with roughly equivalent H5 scores/ranks
(one from list (a) and the other from list (b) above) and
were asked to label the more interesting video between
the two, or report that they were equivalent. Majority
voting was used among the users votes to determine the
video pick from each pair. From the results reported in
Table VII we observe that while the preference of the
users lies slightly more for videos in set (a), in almost
half of the cases the highlights uniquely and originally
produced by the H5 system were deemed equally if
not more interesting. This reflects that the system was
able to discover content that users find interesting and
goes beyond what was officially produced. It is also
interesting to notice that our system is agnostic with
respect to the actual score action of a given play, that
is, a highlight is detected even when the ball does not
end up in the hole, but the shot is recognized as valuable
by the crowd and/or commentator and players through
their reactions to it.

D. Self-Supervised Player Face Recognition

In order to test our self-supervised player recognition
model we randomly selected a set of 10 players who
participated to both the 2016 and the 2017 Masters
tournaments (shown in Figure 11 (a)). In Table VIII we

Fig. 11. Self-supervised player face learning. (a) Examples of
the 10 players used in the experiments. (b) Subset of the images
automatically selected as training set (2016 Masters) for Sergio
Garcia (note the diversity of pose, expression, occlusion, illumination,
resolution). (c) Examples of test faces (2017 Masters) correctly
recognized through self-supervised learning. (d) Examples of False
Negatives (in orange) and False Positives (in red).

report the statistics of the number of training images
that the system was able to automatically obtain in a
self-supervised manner. For each player we obtain on
average 280 images. Data augmentation in the form of
random cropping and scaling was performed to uniform
the distribution of examples across players. Since there
is no supervision in the training data collection process,
some noise in bound to arise. We manually inspected
the purity of each training cluster (where one cluster is
the set of images representing one player) and found
it to be 94.26% on average. Note that despite evalu-
ating its presence, we did not correct for the training
noise, since our method is fully self-supervised. The
face recognition model was fine-tuned from a VGG-
face network with learning rate = 0.001, γ = 0.1,
momentum = 0.9 and weight decay = 0.0005. The net
converged after approximately 4K iterations with batch
size 32. We evaluated the performance of the model on
a set of images randomly sampled from Day 4 of the
2017 Msters and manually annotated with the identity
of the 10 investigated players. Applying the classifier
directly to the images achieved 66.47% accuracy (note
that random guess is 10% in this case since we have 10
classes). We further clustered temporally close frames
based on fc7 features and assigned to all faces in a
cluster the identity which received the highest number
of predictions within the cluster. This process raised the
performance to 81.12%. Figure 11 (c) shows examples of
correctly labeled test images of Sergio Garcia. Note the
large variety of pose, illumination, occlusion and facial
expressions. In row (d) we also show some examples of
false negatives (bordered in orange) and false positives
(in red). The net result of our framework is thus a
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Number of Players 10
Number of Training Images 2,806

Training Clusters Purity 94.26%
Number of Test Images 1,181

Random Guess 10.00%
Classifier Alone Accuracy 66.47%

Classifier + Clustering Accuracy 81.12%

TABLE VIII
2017 MASTERS PLAYER FACE CLASSIFICATION PERFORMANCE.

self-supervised data-collection procedure which allows
to gather large quantities of training data without need
for any annotation, which can be used to learn robust
feature representations and face recognition models.

E. Discussion

Ablation study results. The combination of multi-
modal excitement measures is crucial to determine the
most exciting moments of a game. Though crowd cheer
is an important marker, it alone cannot differentiate
a hole-in-one or the final shot of a golf tournament
from other equally loud events. In addition, we noticed
several edge cases where non-exciting video segments
had loud cheering from other holes. Our system correctly
attenuates the highlight scores in such cases, due to the
lack of player celebration and commentator excitement.
In tennis, we observed how the player celebration marker
can produce false positives associated with raising one’s
hands for purposes other than celebrating (for example
cleaning one’s sweat from the forehead). Our system
copes with it by analyzing the player’s facial expression
in conjunction with his or her actions.

Comparison to the state of the art and extensions.
Many state of the art approaches for sports and video
analytics are actually complementary to ours. We believe
that other sources of excitement measures, such as as
replays [10, 12], crowd facial expressions or information
from social media feeds [32] could be easily integrated
within our framework to further improve it. The live
feed nature of the video streams we analyzed during
the tournaments, which are the input of our system,
made it impossible to rely on production cues such as
replays for our purposes at the time. Similarly we did
not have access to social media feeds during the events.
Integrating such complimentary cues could be a good
direction for future work. Also, end-to-end approaches
to video description or action recognition (to further
capture the plasticity of a move, for example) could be
employed within our framework, although currently the
lack of large-scale annotated training data hinders the
development of such approaches. Finally, most existing
works utilize one or a subset of the components we

employ within our framework. For example Baijal et al.
[6] and Xiong et al. [35] use audio events (such as crowd
cheering) only, Zhang et a. [41] employ closed captions
analysis, which can be equated to the commentator
text analysis we perform on the output of the speech
to text module. As such, the extensive ablation study
we performed with the evaluation of the contribution
of each individual component in our framework and
their combination, as reported in Section V-C, can be
considered as a proxy for comparison with many existing
state of the art methods.

Other uses of self-supervised learning. The same
approach used for self-supervised player recognition
could also be applied for the detection of other items,
for example golf setup (player ready to hit the golf ball),
tennis player serving or handshake at the end of a game,
using TV graphics or other modalities metadata as a
proxy to obtain positive examples without manual su-
pervision. This would generalize our approach to detect
the start of an event without relying on TV graphics, and
also help fix a few failure cases of consecutive shots for
which a single TV graphics is present.

Extension to other sports. While we have demon-
strated our approach for golf and tennis, we believe our
proposed techniques for modeling the excitement levels
of the players, commentator, and spectators are general
and can be extended to other sports as well since most
of our markers are sport agnostic. However, it should be
noted that both tennis and golf are relatively quiet sports,
where exciting events are rare. A sport like basketball
or soccer has the crowds chanting all the time and it
would be challenging to directly employ a completely
sport-agnostic system like ours out-of-the-box, without
any adaptation. In those instances, specialized knowledge
of the sport in question can definitely add value to
the highlight selection process. An integration of sport-
specific action detection markers (i.e. a basketball dunk,
or a soccer goal) might be helpful for the system to
work. On the other hand, the system might be directly
applicable to similar quiet sports such as cricket.

VI. CONCLUSION

We presented a novel approach for automatically ex-
tracting highlights from sports videos based on multi-
modal sport-independent excitement measures, including
audio analysis from the spectators and the commentator,
and visual analysis of the players. Based on that, we
developed a first-of-a-kind system for auto-curation of
golf and tennis highlight packages, which was demon-
strated in three major golf and tennis tournaments in
2017. We also exploited the correlation of different
modalities to learn models with reduced cost in training
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data annotation. As next steps, we plan to generalize our
approach to other sports such as soccer and produce more
complex storytelling video summaries of the games,
while including additional indicators of play importance
such as social media feeds or game specific events
detection.
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