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ABSTRACT
With the rapid growth of multimedia data, it becomes in-
creasingly important to develop semantic concept modeling
approaches that are consistently effective, highly efficient,
and easily scalable. To this end, we first propose the robust
subspace bagging (RB-SBag) algorithm by augmenting ran-
dom subspace bagging with forward model selection. Com-
pared with traditional modeling approaches, RB-SBag offers
a considerably faster learning process while minimizing the
risk of overfitting. Its ensemble structure also enables a
convenient transformation into a simple parallel framework
called MapReduce. To further improve scalability, we also
develop a task scheduling algorithm to optimize task place-
ment for heterogenous tasks. On a collection consisting of
more than 250,000 images and several standard TRECVID
benchmark datasets, RB-SBag achieved more than a 10-
fold speedup with comparable or even better classification
performance than baseline SVMs. We also deployed the
MapReduce implementation on a 16-node Hadoop cluster,
where the proposed task scheduler demonstrates a signifi-
cantly better scalability than the baseline scheduler in the
presence of task heterogeneity.

1. INTRODUCTION
Recent years have witnessed an exponential growth of

multimedia data fostered by cheaper data storage, explosion
of digital content capture devices, and wider availability of
distributed computing platforms on commodity hardware.
Already, over 850 million photos are uploaded to Facebook
each month1, and more than 13 hours of video are uploaded
to YouTube every minute2. Automatic extraction of me-
dia semantics [18, 20, 21] therefore becomes crucial for ef-
fective management of such massive amount of multimedia
data and enabling semantic-based applications such as im-
age and video retrieval, objectionable content filtering, and
content categorization for advertisement and other moneti-
zation purposes. A promising approach for semantic con-

1http://www.facebook.com/press/info.php?statistics
2http://digital-stats.blogspot.com/2008/11/
13-hours-of-video-are-uploaded-to_29.html
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tent management of multimedia data is to model and detect
a large number of semantic concepts in images and video,
covering a wide range of categories, including people-related,
objects, scenes, events, activities, and so forth.

Learning semantic concepts from multimedia content is
typically posed as a set of binary supervised learning prob-
lems, which aim to categorize unannotated examples through
low-level features. Among these modeling algorithms, kernel
machines, such as support vector machines (SVMs), are re-
garded as the state-of-art methods [20]. However, given that
many such algorithms bear a complexity at least quadratic
to the number of labeled data, it is difficult for the plain-
vanilla kernel-machine approaches to keep up with the data
explosion in the era of terabytes or even petabytes, driven
by an ever-increasing amount of data, a richer set of multi-
modal descriptors, and a more complex space of semantic
categories. The computational demand of learning kernel
machines can quickly become unaffordable, and thus hinder
their practicality even if trying to be performance-savvy.

The emergence of a new computing paradigm, dubbed
Data-Intensive Scalable Computing (DISC) [5], may offer
a better solution for high-volume multimedia modeling and
analysis. Different from conventional super-computing mod-
els, DISC mainly focuses on data rather than computation.
The emphasis is to acquire and maintain continually chang-
ing and increasing data collections, in addition to performing
large-scale computations over the data using high-level pro-
gramming models. The leading example is Google, which
uses its MapReduce framework [11] to process 20 peta-bytes
of data per day. Inspired by Google’s success, a number of
scalable machine learning algorithms have been developed
using MapReduce [8]. However, even with perfect scalabil-
ity, simple learning parallelization may not be sufficient for
multimedia processing, e.g., more than 270,000 CPUs are
needed to process 1000 SVM models for YouTube videos in
real time. It is therefore highly desirable to develop concept
modeling methods that are not only scalable to distributed
platforms, but also robust and much more efficient.

In this paper, we propose a new algorithm for data-intensive
semantic concept modeling called Robust Subspace Bag-
ging (RB-SBag), and its MapReduce implementation. To
improve modeling robustness and efficiency, RB-SBag com-
bines both random subspace bagging and forward model se-
lection into a unified approach. It can automatically select
the most effective base models learned from bootstrapped
data examples and sampled feature spaces, before merging
them into a composite classifier. The ensemble structure
of RB-SBag also allows us to straightforwardly transform it
into a two-stage MapReduce process. To improve scalability,
we also propose a runtime model and a task scheduling algo-
rithm to balance the durations of heterogenous tasks. Com-



pared with the state-of-art SVM-based methods, our exper-
iments on a large collection containing more than 250,000
images and several standardized benchmarks, show that RB-
SBag enjoys a learning speedup of an order of magnitude.
Experiments using the MapReduce implementation on a 16-
node Hadoop cluster further show that the proposed task
scheduler can provide a significantly better scalability than
the Hadoop scheduler in the presence of task heterogene-
ity. The proposed RB-SBag algorithm, coupled with its
MapReduce implementation and improved scheduler, leads
to a combined speedup of over two orders of magnitude.

2. RELATED WORK
The task of automatic semantic concept detection has

been investigated extensively in recent years. It has been
shown that, with enough training data, these classifiers can
reach the level of maturity needed for semantic applications
such as multimedia retrieval [18]. A large variety of learning
approaches have been investigated, including SVMs, HMMs,
kNN, logistic regression, AdaBoost, and so on. Among
them, SVMs are considered as the state-of-art modeling ap-
proaches, with sound theoretical justifications [20]. How-
ever, few of these approaches have been shown to be scalable
to datasets with hundreds of thousands, or even millions, of
training instances. This issue becomes more critical given
the recent emergence of numerous large-scale multimedia
collections, e.g., the 80 million “tiny images” collected by
Torralba et al. [25], 3.2 million images with 5247 synset an-
notation provided by ImageNet [12], and more than 100,000
YouTube video clips from LIBSCOM [14].

Advanced optimization methods have been proposed to
speed up learning algorithms such as SVMs. Examples in-
clude down-sampling the data/feature space [24,27], and re-
moving instances likely to be non-support vectors [22]. An-
other scalable option for concept detection is called search-
based annotation [26]. It retrieves the top matched exam-
ples, and extracts the co-occurrence patterns from their as-
sociated tags. This is inspired by the fact that content-based
retrieval can scale to millions of images with help from ad-
vanced feature indexing techniques, such as kd-trees and lo-
cality sensitive hashing (LSH). However, since search-based
annotation assumes all concepts share the same distance
metric and needs to keep every training data instance for
the prediction phase, it is usually less portable and accurate
than learning-based methods.

Our work is also related to the parallelization of kernel
machine learning on distributed computing platforms [11]
or multi-core processors [8]. These approaches can be cat-
egorized into two families. The first family of methods fo-
cus on rewriting and distributing the core optimization pro-
cess, such as quadratic programming for SVMs. For in-
stance, Zanni et al. [29] used parallel gradient prediction
to decompose QP sub-problems using the gradient projec-
tion. PSVM [7] iteratively applies a row-based approximate
matrix decomposition and distributes a fraction of the fac-
torized matrix to each node. The second family of meth-
ods focuses on partitioning the training data to multiple
subsets, and independently optimizing each subset. Col-
lobert et al. [10] developed a parallel implementation for
mixture of SVMs, which learns multiple SVMs on random
subsets and combines them via a neural network gating func-
tion. Graf et al. [13] moved one step forward by iteratively
combining and filtering a “cascade” of SVMs until the global

optimum is reached. Both types of approaches parallelize
the computation by approximation, but they bear different
strengthes. The optimization-centric parallelism leads to a
much finer parallelization granularity, and thus has the po-
tential for better scalability on larger compute clusters. In
contrast, data-centric parallelism is simpler to develop since
it treats the learning algorithm as a “black box”. It also
requires less communication between worker nodes, which is
more suitable for the MapReduce-type programming model.
Finally, these two types of approaches are not mutually ex-
clusive, and they can be applied together to improve ma-
chine learning scalability.

3. ROBUST SUBSPACE BAGGING
To improve the efficiency, robustness and scalability of se-

mantic concept detection, we propose a modeling approach
called robust subspace bagging (RB-SBag). It combines data
sampling, feature sampling, and model selection into a uni-
fied learning framework. We designed this algorithm fol-
lowing the data-centric parallelization principle, because for
data-intensive semantic modeling, it is not uncommon for
users to work with hundreds or thousands of concepts simul-
taneously, and thus a coarse-grain parallelism will suffice.

3.1 Random Subspace Bagging
The proposed algorithm improves upon random subspace

bagging (RSBag) [27], which we review in this section. Let
us first present the notations and terminologies in this work.
Let X be the training collection, where each example x ∈ X
is represented by multiple types of features, e.g., color, tex-
ture, motion, audio, and so on. The example x is also anno-
tated with a number of concept labels yc ∈ {−1, +1}, which
indicate if x has the concept c or not. The goal of the concept
modeling algorithms is to produce a concept classifier of the
form Fc : X → R. Ensemble learning approaches, e.g., bag-
ging, combine the outputs from a family of base models H.
Each base model h ∈ H is a binary classifier that produces
real-valued predictions h : X → R. The base models can be
generated from different learning algorithms, e.g., decision
trees, support vector machines (SVMs), etc., and typically
capture different aspects of the target concept. The learn-
ing algorithm then combines the multiple base models into
a composite classifier as the final output.

The advent of RSBag is inspired by the success of bag-
ging [3] and random subspace methods [15]. Its basic idea
is to average a collection of base models learned from boot-
strapped data samples in selected feature space. The most
prominent example for RSBag is random forest [4], which ag-
gregates an ensemble of unpruned classification/regression
trees using both bootstrapped examples and selected fea-
tures in the tree induction process. Random forest has been
empirically demonstrated to outperform a single tree clas-
sifier. More recently, RSBag with SVM base models have
been demonstrated to be effective in the tasks of image re-
trieval [24] and multimedia concept detection [27].

The details of RSBag are shown in Algorithm 1. From
the training data, the algorithm learns N base models, each
of which is constructed from a balanced set of bootstrapped
samples from the positive data and the negative data with
sample ratio rd, unless the sample size is larger than data
size. On the feature side, if the training data contains multi-
ple feature descriptors, such as color correlogram, edge his-
togram, etc., each descriptor is iteratively selected. Then



Algorithm 1 Random subspace bagging (RSBag)

Input: concept c, number of models N per feature descrip-
tor, training examples Xc with positive data Xc+ and neg-
ative data Xc−, data sampling ratio rd(≤ 1).

1. For each descriptor D, i = 1 to N ,

(a) Select min(|Xc+|, |Xc|rd) samples Xi
+ from Xc+,

and min(|Xc−|, |Xc|rd) samples Xi
− from Xc−;

(b) Keep the entire descriptor, or select a random
feature set Di with sampling rate rf (≤ 1);

(c) Learn a base model hi
c(x) with Xi

+, Xi
− and Di.

(d) Update F i
c (x) ← F i−1

c (x) + hi
c(x);

2. Output the final ensemble concept classifier F N
c .

the algorithm can either use the entire descriptor space, or
further sample a subset of features with a rate of rf . Finally,
all the base models are merged into an ensemble classifier.

By exploiting data and feature redundancy, RSBag can
efficiently learn concept classifiers of smaller size. For ex-
ample, if we learn 5 base models using SVMs with a 20%
data sampling ratio and a 50% feature sampling rate, we
can achieve a 10-fold speedup in the learning process [27].
Moreover, by adjusting the number of base models, RSBag
also provides the flexibility to trade off learning performance
and efficiency on the fly. These advantages make it a very
good fit for data-intensive concept modeling.

To explain why the random subspace bagging can per-
form similarly as the baseline classifiers, we present an up-
per bound for its generalization error, which is controlled by
two complementary ingredients, the model strength s and
the model correlation ρ̄, shown in the following theorem [4]:

Theorem 1. For each concept c in Algorithm 1, an upper
bound for the generalization error is given by,

E∗(Fc) ≤ ρ̄(1− s2
c)/s2

c ,

where sc is the strength of base models for the concept c,

sc = 2Ex,ycPΘ(h(x, Θ) = yc)− 1,

and ρ is the correlation between any two base models, i.e.,

ρ̄ = EΘ,Θ′
[
ρx(h(x, Θ), h(x, Θ′))

]
.

Therefore, if the base models are sufficiently strong and
with small correlation, the above theorem provides an im-
portant performance guarantee for random subspace bag-
ging. However, without any controls on the base models,
RSBag can potentially suffer from the risk of overfitting be-
cause the effectiveness of each data/feature subset may vary
significantly. The correlation between classifiers is not al-
ways small either. As a result, RSBag is prone to suffer
from the potential to overfit when a large number of low-
quality base models are generated.

3.2 Robust Subspace Bagging
To reduce the risk of overfitting, we propose a concept

modeling approach called Robust Subspace Bagging (RB-
SBag) by controlling the strength and correlation of the se-
lected base models. This can be achieved by incorporating
a forward model selection step to iteratively find the best

Algorithm 2 Robust subspace bagging (RB-SBag)

Input: Same as RSBag, plus a validation set Vc.

1. For each descriptor D, for i = 1 to N , follow step (a)
- (c) in Algorithm 1 to create a model pool H

2. For each performance measure j, initialize Hj = H
(a) While Hj is not empty, i ← i + 1

i. Select base model hi
cj(x) that maximizes the

measure j on Vc, after being added to F i−1
cj ;

ii. F i
cj(x) ← F i−1

cj (x) + hi
cj(x);

iii. Remove hi
cj(x) from the model pool Hj .

3. Output the ensemble classifier Fc as the one with the
best average precision on Vc among all {F i

cj}, ∀i, j.

models based on a validation collection. In fact, numerous
studies have shown that bagging can be benefit from such
forward ensemble selection in terms of both effectiveness and
efficiency [6, 19]. For instance, Carunna et al. [6] proposed
several heuristics for selecting essential classifiers in a bag-
ging ensemble. However, to the best of our knowledge, our
proposed algorithm makes the first attempt to combine for-
ward model selection with data/feature sampling in order
to provide robust performance on massive datasets. This is
especially critical when merging random-sampled base mod-
els, because their strengths tend to vary considerably and
are in general much “weaker” than the full models.

The details of RB-SBag are shown in Algorithm 2. We re-
serve a portion of the labeled training data to serve as a val-
idation set Vc for forward model selection. The base models
are learned on the remaining training data Xc with the same
steps as RSBag. After all the base models are generated, we
re-compute forward model selection on 5 performance mea-
sures, i.e., average precision, accuracy, precision, recall and
F1, in order to mitigate the risk being trapped in a local op-
timum. For each measure, the algorithm iteratively selects
the most effective base model from the model pool, adds it to
the composite classifier without replacement, and evaluate
its average precision3 on Vc. Finally, it outputs the ensemble
classifier F i

cj with the highest average precision, where the
number of selected base models i are usually much smaller
than N . This selection step runs very fast, and typically
prunes more than 70-80% base models in practice.

RB-SBag offers a number of advantages when we have
massive labeled data. For example, sampling data and fea-
tures allows us to efficiently learn base models with much less
computational resources as well as less memory consump-
tion. In the case of SVMs, it reduces the time complexity to
Nr2

drf times the full SVM baseline, and the memory con-
sumption to Nr2

d times, where rd and rf sampling factors
can be as low as 10-20%. This also allows us to perform
more extensive parameter selection on each sample dataset.
Moreover, model selection can not only improve the learning
robustness, but also prune most useless base models, which
brings a significant speedup in the detection phase. Note
that while having better model robustness, RB-SBag may be
affected by the risk of losing a small amount of labeled data

3Average precision is the primary concept modeling measure
adopted by NIST in the TRECVID evaluation [21].
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Figure 1: Illustration of the Map-Reduce implementation for Robust Subspace Bagging.

due to reserving it for model selection. This issue, however,
is mitigated in the data-intensive learning scenario because
of sufficient training data, as confirmed by our experiments.

4. MAP-REDUCE IMPLEMENTATION OF
ROBUST SUBSPACE BAGGING

The need for distributed computing is apparent for mod-
eling semantic concepts on massive multimedia data, which
can range anywhere from tens of gigabytes, to terabytes
or even perabytes. Inspired by the map and reduce func-
tions commonly used in functional programming, Dean and
Ghemawat [11] introduced a parallel computation paradigm
called MapReduce. Its popular open-source implementa-
tion, Hadoop [1], has been successfully deployed to process
hundreds of terabytes of data on at least 10,000 proces-
sors. Compared with other parallel programming frame-
works, MapReduce provides the necessary simplicity by mak-
ing the details of parallelization, fault-tolerance, data distri-
bution and load balancing transparent to users. Also, this
model is easily applicable to a wide range of data-intensive
problems, such as machine learning, information extraction,
indexing, graph construction and so on [11].

The programming model of MapReduce is as follows. Its
basic data structures are a set of 〈key, value〉 pairs with user-
specific interpretation. Two individual functions are needed
for any computation, called Map and Reduce. The Map
function first reads a list of input key and associated values,
and produces a list of intermediate 〈key, value〉 pairs. Af-
ter grouping and shuffling intermediate pairs with the same
keys, the Reduce function is applied to perform merge opera-
tions on all intermediate pairs for each key, and emit output
pairs of 〈key, value〉4. This model provides sufficient high-
level information for parallelization, where the Map function
can be executed in parallel on non-overlapping data parti-

4Note that the input and output 〈key, value〉 pairs can have
different formats

tions, and the Reduce function can be executed in parallel
on intermediate pairs with the same keys. Its abstraction
can be summarized by the following pseudo-code,

map : (k1, v1) → list(k2, v2),

reduce : (k2, list(v2)) → list(k3, v3).

Because of its ensemble structure, RB-SBag can be straight-
forwardly transformed into a two-stage MapReduce process,
corresponding to the first two steps described in Algorithm 2.
Figure 1 illustrates the main idea of the MapReduce imple-
mentation for RB-SBag based on Hadoop. The first MapRe-
duce job only contains a training map function, designed to
generate and store the pool of base models, without using
any reduce functions. The abstraction for its input and out-
put key-values can be written as,

mapt : ([i, t], Ltrain) → ([i, t], Lh),

where i is concept index, t is the bag index and their joint
vector [i, t] forms the mapping keys. For values, Ltrain is the
location of training data, and Lh is the location of the out-
put base model h. After all the base models are produced,
the next MapReduce job computes the prediction results on
the validation set V using a validation map function, con-
ducts forward model selection and combines multiple models
into composite classifiers using a fusion reduce function. Its
abstraction can be written similarly,

mapv : ([i, t], Lh) → list(i, [Lh, Lh
pred]),

reducef : (i, list[Lh, Lh
pred]) → (i, LCi),

where Lh
pred refers to the location of prediction results on

V, and LCi refers to the final composite classifiers. All
the input, output and intermediate results are stored in the
Hadoop distributed file systems (HDFS) which provides a
large-scale data storage infrastructure based on clusters of
commodity computers.
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Figure 2: Runtime of map functions against feature
dimension of its base model for concept “Vehicle”.
The dash line are fitted based on the time model.

The above MapReduce process provides a coarse-grained
parallelism at the level of base models. Therefore, exist-
ing learning tools such as libSVM or Weka can be directly
re-used without any major re-development efforts. Under
this design, the maximal number of processors that can be
scaled to is limited by the total number of base models over
all concepts. However, given the large variety of multimedia
features, diversity of concepts, and scale of training data,
this limit can easily grow beyond the common size of com-
modity clusters nowadays. For instance, following our de-
fault setting in this work that learns 200 base models per
concept, the proposed algorithm can scale to 10,000 proces-
sors on a set of merely 50 concepts, whereas most typical
Hadoop-based clusters contain less than 500 nodes [2].

5. HETEROGENEOUS TASK SCHEDULING
As a crucial component for distributed computing, schedul-

ing aims to optimize the overall running time of MapReduce
jobs. Task is the basic unit for scheduling in Hadoop, where
each task can encapsulate multiple map / reduce functions.
The Hadoop scheduling mechanism is implemented in a mas-
ter node which runs a job tracker. The job tracker manages
a number of worker nodes which can run one or more task
trackers. When a task tracker notifies the master it has
empty slots, the scheduler assigns it the next available task.

Such a passive scheduling algorithm works well when the
following assumption holds, i.e., tasks in the same category
(map or reduce) require roughly the same amount of time to
execute [28], so that no obvious stragglers will slow down the
job. However, this assumption is not valid in the MapRe-
duce process for RB-SBag, because it can learn from het-
erogenous types of features with various dimensions, and
the number of data samples are not guaranteed to be iden-
tical either. If task durations are not balanced, a long task
with large number of features and samples can considerably
drag down the scalability on the entire cluster.

In this section, we propose a task scheduling algorithm
by estimating the running time of each map function and
organizing complementary functions into tasks of similar es-
timated durations. We mainly investigate the scheduling
method for the training map functions, because the reduce
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Figure 3: Run time distribution of training map
tasks for “Vehicle” before and after balancing.

functions run much faster, and the validation map functions
will also be balanced if the training functions are balanced.

5.1 Runtime modeling
We developed a runtime model to predict the running

time of map functions based on historical data. For machine
learning algorithms, a general runtime model for each map
function can be described as follows,

T (|X|, |F |) = t0 + |X|α|F |βt1 + ε,

where t0 is the initialization overhead, t1 is the time scaling
factor, |X| and |F | is the number of data samples and feature
dimensions, α, β are their corresponding exponents, and ε is
a noise term following a normal distribution N(0, σ2). The
noise term captures the variance of system overhead, which
is inherent to the run-time environment and thus cannot be
eliminated by using better time models.

The runtime model is specific to the underlying learn-
ing algorithms. As an example, we use the state-of-the-art
modeling algorithm, SVMs, to describe our parameter esti-
mation method, but this method is generally applicable to
other learning algorithms. To estimate the model parame-
ters, we first collected the time statistics of map functions
running on a single concept with fixed data samples but dif-
ferent types of features. Figure 2 plots the time distribution
of 200 map functions against the number of feature dimen-
sion for learning concept “vehicle”. Based on these results,
we use regression techniques to estimate the parameters as
t0 = 0.39 sec, |X|αt1 = 0.017 sec, σ = 0.43 and β = 1. Sim-
ilarly, we can then estimate the parameter α to be 2, and
t1 = 1.7 × 10−8 sec based on the statistics across multiple
concepts. As shown in Figure 2, our models provides a close
approximation for the true run time of map functions. It
is also in line with previous studies [17] which show that
learning time for SVMs is linear with respect to feature di-
mensionality, and quadratic to data size.

5.2 Task scheduling using time models
With the proposed time models, we can naturally formu-

late task scheduling as a multi-processor scheduling prob-
lem, i.e., finding the minimum time to complete all map
functions on M identical processors given the map function



Algorithm 3 The Multi-Fit algorithm

Input: M tasks, N map functions with duration Ti, iter-
ation of binary search K.

1. (Optional) sort the map duration {Ti};
2. Lower bound Bl =

∑
i Ti/N , Upper bound Bu = 2·Bl;

3. For k = 1 to K,

(a) B ← (Bl + Bu)/2, Pm ← 0, placed(i) ← false;

(b) for i = 1 to N, for m = 1 to M,

i. if Ti can be packed in m, i.e., Ti + Pm ≤ B,
then Pm ← Pm + Ti, placed(i) ← true;

(c) if ∀ placed(i), then Bu ← B; else Bl ← B;

4. Output the bound B and the map function placement.

i of length Ti. Unfortunately, this problem has been proven
to be NP-hard. Therefore, several heuristic algorithms have
been suggested in the hope of providing near-optimal so-
lutions. A well-known approach is the MultiFit algorithm
developed by Coffman et al. [9]. Its basic idea is to con-
vert multi-processor scheduling into a series of bin packing
problems, together with a binary search over bin capacity,
to find the minimum capacity such that all jobs (i.e., map
functions) can fit into M bins (i.e., tasks). Therefore, we
adopt MultiFit for task scheduling. Algorithm 3 describes
the algorithm details in our context. To illustrate, Figure 3
compares the runtime distribution of 96 training map tasks
for “Vehicle” before and after scheduling. It clearly demon-
strates our task scheduling algorithm can provide more bal-
anced task distributions than the baseline scheduler.

Note that the list of map duration {Ti} can be either
sorted in a descending order, or left unsorted. These two
choices correspond to two kinds of bin-packing algorithms,
i.e. First-Fit-Decreasing (FFD) and First-Fit (FF). Among
these two choices, MultiFit-FFD has a slightly better worse-
case performance, i.e. 1.2 + 2−K times the optimal solu-
tion [9]. However, we found that the MultiFit-FFD tends
to aggregate a large number of small map functions, as well
as a small number of large functions. While their theoreti-
cal durations are roughly equivalent, their real performance
can end up to be very different because of the unpredictable
noise terms and system overhead. Alternatively, MultiFit-
FF generates more balanced configurations of tasks, and
leads to more robust runtime scalability in practice. More
discussions on these two schemes are presented in Section 6.

6. EXPERIMENTS
This section presents the results of semantic concept mod-

eling on a large-scale image collection, as well as several
benchmark datasets, in order to demonstrate the effective-
ness and scalability of the proposed algorithms.

6.1 Experimental Setting
Our evaluation is mainly carried out on a large-scale col-

lection consisting of 261,480 images. These images are col-
lected from diverse domains such as WWW crawls, social
media sites, news videos and so on. All the images are man-
ually annotated with 531 concepts organized in a customized

Figure 4: Image examples for the large-scale image
collection. One image is shown for each concept.

visual taxonomy. These annotations are iteratively verified
by professional users to guarantee their correctness. To ob-
tain sufficient results in a reasonable time, we chose 63 rep-
resentative concepts in our experiments. Figure 4 shows one
image example for each of the 63 concepts, which covers a
wide range of categories including activities, people, general
objects, landmarks, sports and scenes. The number of posi-
tive examples ranged from 140 to more than 90,000 with an
average around 4,300 for each concept. The negative images
are automatically derived from the taxonomy. We randomly
split the collection into the following: 80% as development
data for learning semantic concepts, and the remaining 20%
as testing data for evaluating modeling performance.

Because empirical results shows that concept detection
can benefit from a rich set of features, we adopted a total of
98 types of visual features by generating 13 different descrip-
tors (e.g., color correlogram, wavelet texture) on 8 granular-
ities (e.g., global, grid) [23]. The feature dimensions ranged
widely from 6 to more than 1000 [23]. The disk space of
all these features sums up to be more than 150GB. The ef-
fectiveness of concept modeling is evaluated using average
precision (AP) [21]. Mean average precision (MAP) is the
mean of average precision over all the concepts.

We also examine RB-SBag on three TRECVID bench-
mark collections, i.e., TREC’05, ’07 and ’08. Their statistics
are shown in Table 1(a). All these collections and concepts
are officially provided, except TREC’05 is a subset sampled
from its official version. We vary the features in these col-
lections to examine the generalizability of RB-SBag. Three
features are used in TREC’05 including color histogram,
color correlogram and edge histogram. Three more global-
level features are added to TREC’07 [23]. For TREC’08, we
instead used a 1000-dimensional image codebook features
based on local-feature-point SIFT descriptors [16].

The platform dedicated for our experiments is a 16-node
Hadoop cluster. It consists primarily of commodity work-
stations running with 2.4GHz x86 processors and memory
capacity of 2GB. We configure each worker node to run up
to 2 map tasks and 2 reduce tasks simultaneously.



(a) Data and algorithm statistics. Ntrain, Ntest, Nc, Nf are
the number of training data, testing data, concepts and fea-
tures. rf , rd are feature and data sampling ratios. N is the
number of base models.

Ntrain Ntest Nc Nf rf rd N
TREC05 4894 1631 39 343 0.1 0.2 5
TREC07 21532 22085 20 825 0.5 0.2 5
TREC08 43617 112388 20 1000 0.5 0.2 5

(b) Performance comparison w.r.t. mean aver-
age precision. Speedup is the runtime ratio be-
tween Baseline and RB-SBag.

Baseline RB-SBag Speedup
TREC05 0.4480 0.4520 50
TREC07 0.0638 0.0670 10
TREC08 0.1325 0.1322 11

Table 1: Data statistics and performance compari-
son on three TRECVID benchmark collections.

6.2 Results of Robust Subspace Bagging
We first report the experimental results on the TRECVID

benchmarks. The baseline classifiers are learned using SVMs
with all development data and features (Baseline). The
kernel chosen for TREC’05 and TREC’07 is a RBF kernel
K(x, y) = e−ρd(x,y), d(·) = ‖x−y‖2, and that for TREC’08 is

a χ2 kernel d(·) =
∑

i
(xi−yi)

2

xi+yi
, based on the characteristics

of their features. ρ is determined based on two-fold cross
validation. This baseline leads to a very close performance to
the state-of-the-art systems when similar features are used.

For RS-SBag, we split the development data into 80% as
training set for learning base models, and 20% as valida-
tion set for model selection. A total of 5 SVM base models
are learned for each concept. Because their entire collec-
tions can be loaded to memory, we simply concatenate all
features into a single set of features. The selected data sam-
pling ratio rd and the feature sampling ratio rf are listed in
Table 1(a). They are determined using the same two-fold
cross validation as learning ρ, where a list of pre-defined ra-
tios are searcher for the minimal ones that can achieve at
least 90% of the baseline performance. Table 1(b) shows
RB-SBag can consistently achieve competitive or even bet-
ter performance than the baseline SVMs, with a 10x-50x
speedup on the modeling process. This demonstrates that
RB-SBag can produce robust learning performance with sig-
nificantly less training time.

Next, we present and discuss how RS-SBag performs on
the large-scale image collection. Similar to above experi-
ments, 80% of the development data is utilized for train-
ing, and the rest for validation. Base models are created
by SVMs with a RBF kernel, with ρ estimated by two-fold
cross validation. The data sampling ratio is set to 0.2, and
each of 98 feature types are iteratively selected. We gener-
ate 2 base models per feature type, which results in 196 base
models per concept. These are the default settings for our
experiments unless stated otherwise.

Figure 5 compares MAP and learning time for robust sub-
space bagging with several other methods5. The baseline
method learns and averages a single SVM base models for

5The relatively higher baseline performance for this collec-
tion is mainly because of the complete randomness of train-
test partition and a less skewed data distribution.
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Figure 5: Comparison of testing MAP and average
learning time between RB-SBag and three baselines
on the large-scale image collection.
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Figure 6: Validation performance with a growing
number of base models for 6 selected concepts. 3
are frequent (solid), and 3 are infrequent (dashed).

each feature type on the entire development data. We also
compared RS-SBag with two other baselines as the interme-
diate steps, i.e., learning base models with model selection
but no sampling (Base-Valid), and random subspace bag-
ging (RSBag) with sampling but no model selection. It can
be observed that on average, Base-Valid provides a similar
performance as Baseline using less than 70% of the learning
time. This efficiency improvement comes from the smaller
training dataset for learning base models since a portion of
the training data is reserved for model validation and se-
lection purposes. In comparison, RSBag offered an more
impressive 10-fold speedup over Baseline but its MAP is de-
graded due to overfitting. By merging the strengthes of both
random sampling and model selection, RB-SBag achieves a
more robust modeling performance with a negligible time in-
crease over RSBag. This is consistent with our observations
on the TRECVID benchmarks as well.

The overfitting effect of RSBag can be further illustrated
by Figure 6, which shows the learning curves on the valida-
tion set for 3 frequent concepts and 3 infrequent concepts.
With a growing number of base models sorted in descend-



(a) 10 Most Frequent Concepts

Base Base-V RSBag RB-SBag S-Up
Human 0.906 0.915 0.901 0.913 16.48
Individual 0.728 0.742 0.709 0.756 12.26
Outdoors 0.945 0.957 0.939 0.960 7.44
Vehicles 0.914 0.937 0.895 0.937 11.90
Urban Scene 0.903 0.915 0.883 0.898 8.22
Group 0.779 0.789 0.757 0.791 9.30
Sport 0.867 0.878 0.852 0.860 11.45
Landmark 0.989 0.993 0.987 0.990 10.12
Land Vehicle 0.898 0.912 0.867 0.913 9.60
Nature 0.889 0.908 0.868 0.895 12.17

(b) 10 Least Frequent Concepts

Base Base-V RSBag RB-SBag S-Up
White House 0.946 0.935 0.931 0.935 4.95
Stat. Liberty 0.879 0.874 0.796 0.853 6.86
Ice Scene 0.767 0.736 0.683 0.739 6.55
Parade 0.422 0.443 0.396 0.419 8.26
Football 0.929 0.917 0.878 0.902 5.96
Pyramids 0.933 0.932 0.891 0.926 5.33
Watch 0.917 0.928 0.876 0.915 9.33
Holding Child 0.606 0.591 0.585 0.577 3.70
Raft 0.850 0.801 0.790 0.799 8.31
Team Photo 0.672 0.618 0.526 0.565 5.26

Table 2: Testing MAP and learning speedup of RS-
SBag and three other methods for 10 most and 10
least frequent concepts. The speedup S-Up is the
runtime ratio between Baseline and RB-SBag.

ing order of their performance, we found that the modeling
performance of these concepts saturates within a wide range
of 20 ∼ 80 base models, after which some of the concepts
start to overfit, e.g., “Sport” and “Team Photo”. More im-
portantly, the saturation points are inconsistent across con-
cepts, and thus we cannot rely on a fixed cutoff threshold.
Without a proper model selection and pruning step, RSBag
can easily suffer from incorporating ineffective base models
that are generated from small random samples.

Table 2 lists a more detailed report on the 10 most fre-
quent concepts and the 10 least frequent concepts. By com-
paring these two groups side by side, we can obtain a deeper
understanding on when and why the proposed algorithm
succeeds or fails. For instance, RB-SBag can bring a larger
learning speedup to the frequent group than the infrequent
group, because for the frequent group, RB-SBag can sam-
ple more aggressively without being limited by the number
of available positive examples. With respect to the learn-
ing performance, RB-SBag and Base-Valid appear to con-
sistently outperform Baseline and RSBag in the frequent
group, which again justifies the advantage of forward model
selection. However, if we switch to the infrequent group,
we can observe that both Base-Valid and RB-SBag have a
worse performance than Baseline. This can be attributed
to the redistribution of labeled data from model learning
to forward selection, where 20% of the training data is re-
served for validation purposes. Such a loss is not critical
when training data is abundant but it is more likely to hurt
the performance with less data available. Therefore, it is an
interesting topic to study the trade-off between data used
for model learning and selection in the future work.

To further investigate the sensitivity of data sampling ra-
tio for RB-SBag, we plot Figure 7 to show the mean average
precision against an increasing data sampling ratios from
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Figure 7: Testing MAP and average learning time
against data sampling ratios for RB-SBag.

Configuration 2 nodes 4 nodes 8 nodes 16 nodes
Map Time (sec.) 71.0s 71.5s 71.8s 70.3s

Table 3: Average runtime of training map tasks
against the number of nodes.

0.6% to 20%. As can be seen, the learning performance in-
creases dramatically at the beginning before reaching the
plateau on 10% - 20%. However, this performance improve-
ment comes at the price of a slower learning process, where
the run time with ratio 20% is 10 times of the run time with
ratio 2.5%. Therefore, the best sampling ratio should be
dynamically selected based on users’ requirement on perfor-
mance and time consumption.

6.3 Results of MapReduce Implementation
In this section, we evaluate the scalability of the proposed

task scheduling algorithm for the MapReduce implementa-
tion of RB-SBag. Because of resource constraints, the fol-
lowing experiments only evaluated the 10 most frequent con-
cepts. For each concept, we spawn 1 map function to learn
each of its base models, which sums up to N = 196 in total.
These training map functions are then grouped into M = 32
map tasks for scheduling purpose. The Hadoop scheduler
simply groups these functions in a sequential order. For
the MultiFit algorithm in the proposed scheduler, we use
First-Fit (FF) or First-Fit-Decreasing (FFD) bin packing
algorithms, and set the maximum binary search iteration
K = 10 unless stated otherwise. To obtain more stable es-
timation for each configuration, we repeat each experiment
3 times and report average performance.

To evaluate the scalability of the proposed scheduler, Fig-
ure 8 compares the learning speedup and its confidence inter-
val against a growing number of nodes for each individual
concept. The scalability of the baseline scheduler quickly
goes down after running on more than 8 nodes. Such par-
allelization inefficiency is not due to the increasing over-
head of disk I/O and network traffic. This can be con-
firmed by the runtime statistics of map functions shown
in Table 3. We can observe that the average mapper run-
time is almost equivalent for all configurations, and thus no
slowdown happens in each base model learning process. In-
stead, as mentioned in Section 5, the slowdown stems from
the non-informative scheduling algorithm in presence of task
heterogeneity. In contrast, the MultiFit schedulers can pro-
vide significant improvement in terms of scalability for all
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(a) Human
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(b) Individual
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(c) Outdoors
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(d) Vehicles
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(e) Urban Scene
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(f) Group of People
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(g) Sport
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(h) Landmark
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(i) Land Vehicle
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(j) Nature

Figure 8: Comparing the learning scalability of three scheduling methods, i.e., Baseline, MultiFit-FFD and
MultiFit-FF on each of the 10 most frequent concepts. The number of nodes grows from 1 to 16.
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Figure 9: Comparing the scalability of three
scheduling methods when learning all 10 concepts.

concepts. For example, for concept “Human”, the 16-node
learning speedup improves from 8.5 using baseline to 12.5
using MultiFit, although it is not yet linear due to inherent
runtime variance, limited reduce functions, and task over-
head. These figures also show Multi-FF can consistently
outperform MultiFit-FFD, because Multi-FF can provide a
more balanced task assignment.

Fortunately, the larger the data collection and the con-
cept list are, the fewer the unparallelizable components, and
hence a higher scalability can be achieved. Figure 9 plots a
similar comparison when learning all 10 concepts together,
where MultiFit-FF can achieve a closer-to-linear speedup of
14.1 with more data available. For more detailed analysis,
Figure 10 breaks down this MapReduce process into three
parts, i.e., training map time, validation map time, and fu-
sion reduce time. It shows that most of the computational
time is spent in either map tasks. However, the reduce tasks
become more non-negligible with larger number of nodes
available, because currently the number of reduce functions
is limited by the number of concepts, i.e., 10. This can be
addressed by splitting and re-balancing the reduce functions,

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16
Number of Nodes

R
u

n
n

in
g

 T
im

e 
B

re
ak

d
o

w
n

Train Map Validate Map Fusion Reduce

Figure 10: Runtime breakdown for each map and
reduce process against the number of nodes.

but we leave it for future work.
Figure 11 examines the effect of varying the number of

map tasks from 32 (default) to 1960 (total number of base
models) using the baseline Hadoop scheduler. It shows that
the best task size for the baseline scheduler is around 128
to 256, based on the trade-off between scheduling flexibility
and task overhead. However, even with the best task size,
its runtime is still higher than MultiFit. This again confirms
the superiority of the proposed scheduler.

Finally, it is worth pointing out that compared with base-
line SVMs, combining the 10-fold speedup from RB-SBag
and 14-fold speedup from MultiFit-FF can lead to a more
than 140 times faster modeling process on 16 nodes. Such
a speedup is difficult to achieve by using only traditional
parallel machine learning algorithms.

7. CONCLUSIONS
In this paper, we proposed the Robust Subspace Bag-

ging algorithm (RB-SBag) and its MapReduce implementa-
tion for data-intensive semantic concept modeling. To im-
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Figure 11: The overall map-task runtime against the
number of map tasks for different schedulers.

prove modeling robustness and learning efficiency, RS-SBag
combines random subspace bagging together with forward
model selection to automatically select the most effective
base models and merge them into a composite classifier. To
our best knowledge, this model is the first attempt to com-
bine data sampling and model selection into a unified frame-
work. Compared with the state-of-art SVM-based modeling
methods, our experiments on a quarter-million image col-
lection and several standard TRECVID benchmarks show
that RB-SBag can enjoy a learning speedup by an order of
magnitude, without suffering from the risk of overfitting.

The ensemble structure of RB-SBag also allows us to eas-
ily transform it into a two-stage MapReduce process. To
improve node balancing and task placement, we also pro-
posed a runtime model and developed a MultiFit-based task
scheduling algorithm to balance the estimated durations of
heterogenous map tasks. Our implementation on a 16-node
Hadoop cluster shows that the proposed task scheduler can
provide a significantly better scalability than the baseline
scheduler in presence of task heterogeneity. Putting every-
thing together, the proposed approaches can provide a ro-
bust learning performance with a more than 140x speedup
in comparison with the baseline SVMs.
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