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Social Media is a Goldmine of for Multimedia Research
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Previous Work
§ Text-based Gender estimation from social media , language dependent, performance ceiling

– Tweets [Burger et al. EMNLP11] [Pennacchiotti et al. ICWSM11]
– First name [Liu and Ruths AAAI13] 
– Hashtags [Totems14]
– Psycho-linguistic features [System U] [Kokkos et al.  FM14]
– Topic modeling on boards [Chang et al. CSCW14]

§ Non-text based Gender estimation from social media
– Collaborative Filtering (who you are friends with, who you follow) [Ito et al. ASONAM13] [Ludu CORR14] 
 limited performance
– Profile Picture face analysis, not always available/reliable
– Page Colors [AlowibdiI et al. CASNAM13], limited performance, not always available
– Whole Feed Images [Ma et al. IWCMASM14], small set of ad hoc classifiers, no use of profile pictures, extremely limited 

generalization power 

§ Combinations Gender estimation from social media
– Text + Images [Sakaki et al. ICCL14]  
 small preliminary study, over-simplicistic fusion method: αp(text) + (1- α)p(visual) , limited performance

§ Multimodal Fusion (not for gender prediction)
– Extensive literature, early fusion, late fusion, general fusion strategies vs proposed specific filtered fusion (see experimental 

results)
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A need remains for a system that derives user gender using an effective multimodal 
combination of visual and non-visual cues



Research Questions

§ Is there a correlation between gender and the content of the images that people post on 
social media?

 yes 

§ If so, can we predict a social media user’s gender based on a semantic analysis of those 
images?

 yes

§ Does the visual insight provide complementary information with respect to others (text)?

   yes
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Summary of Invention –Extracted Information 
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Multimodal Cues

§ Textual

– Name

– Description

– Tweets (text)

§ Visual

– Profile picture

– Header picture

– Profile colors

– Feed images/videos



Summary of Invention
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Textual Analytics

§ Profile Name

§ Text from tweets
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Visual Analytics

§ Profile Picture

§ Color

§ Analysis of Collection of Posted Images
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What’s in a Twitter Profile Picture?
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What’s in a Twitter Profile Picture?

the good (looking)

the bad

the cute

…and the weird?
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Limitations of Profile Picture Face Analysis

Occlusion

celebrity swap

Time travel

Multiple people

Cloning

Interesting angles

Misleading Clothing

Non-human pictures
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Source: http://www.faceplusplus.com/demo-search/

Race, glass, smiling

Age, gender

Limitations of Profile Picture Face Analysis

http://www.faceplusplus.com/demo-search/


Profile Picture : proposed approach

§ Face++ detector

§ Concept Detectors for 25 categories
– Adult, Animal, Baby, Beach, Boy, Brand Logo, Building, CGI, Car, Cat, Child, Dog, Elderly 

Man, Elderly Person, Elderly Woman, Female Adult, Girl, Horse, Human Portrait View, 
Human, Icon, Male Adult, Motorcycle, Nature, Two People

– Train SVM on top of Semantic Model Vector of concept detectors
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Linear Profile SVM weights by category
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Images From the Entire Feed

§ Same Semantic Model Vector Approach
– SMV 51 (subset of IMARS Taxonomy)
– SMV 717 (subset of IMARS Taxonomy)
– SMV Deep (from Caffe, 1K ImageNet categories)

§ Aggregation Strategies
– Model on Images directly
– Simple Prediction Scores Aggregations (avg, max)
– Statistical Count scores (threshold + count)



Twitter Gender Dataset Examples
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Male



Twitter Gender Dataset Examples
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Female



Linear SVM weights by category (SMV 51)
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Top 14 weighted categories by gender (SMV51)
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Top 20 weighted categories by gender (Deep 
ImageNet)
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Use Profile Page Color Info

§ Background color

§ Text color

§ Link color

§ Sidebar Fill color

§ Sidebar Border color

512 Quantized colors (RGB with 3 bits each)

71% Accuracy when using all 5
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Jalal S. Alowibdi, Ugo A. Buy  and Philip Yu, Language Independent Gender Classification on Twitter, 
2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

http://www.twitteraccountsdetails.com/



Use Profile Page Color Info
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512 bins

729 bins



Experimental Setup and Proposed Approach

§ Public Annotated Dataset of 10K Twitter users1

§ 10 Training/Test random splits, each test split with 400 male and 400 female users

Proposed Approach : Fusion of 4 Multimodal Cues

– First Name (when available): associated with frequency in Male/Female populations2

– Text : standard bag of words from ~200 tweets, analyzed with LibShortText3 library

– Profile Picture: Semantic Model Vector (25 concepts) and gender inference from Face++

– Stream Pictures : Semantic Model Vector (51, 717, 1K) aggregated over user pictures

– Page colors
– Background and Header picture

§ Gender modeling was conducted using SVM with RBF kernel, with kernel parameters 
estimated via grid search
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1. http://www.networkdynamics.org/static/datasets/LiuRuthsMicrotext.zip 
 From paper Liu and Ruths, What’s in a Name? Using First Names as Features for Gender Inference in Twitter, AAAI 2013
2. http://www.census.gov/genealogy/www/data/1990surnames/names files.html
3. http://www.csie.ntu.edu.tw/~cjlin/libshorttext/

http://www.census.gov/genealogy/www/data/1990surnames/names%20files.html


Experimental Results
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§ Public Annotated Dataset of 10K Twitter users1

§ 10 Training/Test random splits, each test split with 400 male and 400 female users, rest used for training

§ Gender modeling was conducted using SVM with RBF kernel, kernel parameters estimated via grid search

Image/video collection (visual feed)
different pooling strategies

Individual Performance of Different Approaches

Visual

Text

Fusion Strategies

1. http://www.networkdynamics.org/static/datasets/LiuRuthsMicrotext.zip 
 From paper Liu and Ruths, What’s in a Name? Using First Names as Features for Gender Inference in Twitter, AAAI 2013



Experimental Results
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83.375
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88.0125

Visual Feed Profile Picture Visual Fusion First Name LibText 200 Tweets Text Fusion Visual + Text
Fusion

Gender Prediction Accuracy

Random 
Prediction 50%

87.1

[Liu and Ruths]*

§ Public Annotated Dataset of 10K Twitter users1

§ 10 Training/Test random splits, each test split with 400 male and 400 female users, rest used for training

§ Gender modeling was conducted using SVM with RBF kernel, kernel parameters estimated via grid search

1. http://www.networkdynamics.org/static/datasets/LiuRuthsMicrotext.zip 
 From paper Liu and Ruths, What’s in a Name? Using First Names as Features for Gender Inference in Twitter, AAAI 2013

26

*Different splits

Top 
performance 

on this 
dataset



Conclusions and Future Directions

Conclusions
§ There is a correlation between the content of images posted on social media and the users’ 

gender, which can be exploited for gender prediction

§ Visual and textual information can be combined to boost gender prediction performance

§ Not all sources of information are equal. Filtered fusion provides best results.

Future Directions
§ Improve/tailor visual classifiers

§ Cross media comparisons (Twitter vs Instagram vs Facebook….)

§ Use framework to predict other attributes (age, hobbies, life events…)
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Questions?



References
§ [BurgerEMNLP11] J. D. Burger, J. Henderson, G. Kim, and G. Zarrella. Discriminating gender on Twitter. In Proceedings of 

the Conference on Empirical Methods in Natural Language Processing, EMNLP 2011

§ [PennacchiottiICWSM 11] M. Pennacchiotti and A.-M. Popescu. A machine learning approach to twitter user classication. In 
ICWSM. The AAAI Press, 2011

§ [LiuAAAI13] Liu and Ruths. What’s in a Name? Using First Names as Features for Gender Inference in Twitter. AAAI 2013

§ [AlowibdiICASNAM13] Jalal S. Alowibdi, Ugo A. Buy  and Philip Yu. Language Independent Gender Classification on Twitter. 
2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

§ [ChangCSCW14] S. Chang, V. Kumar, E. Gilbert, and L. Terveen. Specialization, homophily, and gender in a social curation 
site: Findings from pinterest. In CSCW, 2014

§ [ItoASONAM13] J. Ito, T. Hoshide, H. Toda, T. Uchiyama, and K. Nishida. What is he/she like?: Estimating twitter user 
attributes from contents and social neighbors. In Advances in Social Networks Analysis and Mining (ASONAM), 2013

§ [LuduCORR14] P. S. Ludu. Inferring gender of a twitter user using celebrities it follows. CoRR, 2014.

§ [KokkosFM14] A. Kokkos and T. Tzouramanis. A robust gender inference model for online social networks and its application 
to linkedin and twitter. First Monday, 19(9), 2014

§ [NguyenCOLING14] D. Nguyen, D. Trieschnigg, A. Dogru�oz, R. Gravel, M. Theune, T. Meder, and F. de Jong. Why gender 
and age prediction from tweets is hard: Lessons from a crowdsourcing experiment. In Proceedings of COLING, 2014.

§ [MaIWCMASM14] Xiaojun Ma, Yukihiro Tsuboshita, Noriji Kato. Gender Estimation for SNS User Profiling Automatic Image 
Annotation. 1st International Workshop on Cross-media Analysis for Social Multimedia, 2014

§ [SakakiICCL14] S. Sakaki, Y. Miura, X. Ma, K. Hattori, and T. Ohkuma. Twitter user gender inference using combined analysis 
of text and image processing. In International Conference on Computational Linguistics, 2014.

§ [Totems14] http://totems.co/blog/machine-learning-nodejs-gender-instagram/

§ [FarseevICMR15] Aleksandr Farseev, Liqiang Nie, Mohammad Akbari and Tat-Seng Chua, Harvesting Multiple Sources 
for User Profile Learning: a Big Data Study. In ICMR, 2015

29

http://totems.co/blog/machine-learning-nodejs-gender-instagram/

