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A B S T R A C T

Social relation analysis via images is a new research area that has attracted much interest recently. As social
media usage increases, a wide variety of information can be extracted from the growing number of consumer
photos shared online, such as the category of events captured or the relationships between individuals in
a given picture. Family is one of the most important units in our society, thus categorizing family photos
constitutes an essential step toward image-based social analysis and content-based retrieval of consumer
photos. We propose an approach that combines multiple unique and complimentary cues for recognizing
family photos. The first cue analyzes the geometric arrangement of people in the photograph, which char-
acterizes scene-level information with efficient yet discriminative capability. The second cue models facial
appearance similarities to capture and quantify relevant pairwise relations between individuals in a given
photo. The last cue investigates the semantics of the context in which the photo was taken. Experiments on
a dataset containing thousands of family and non-family pictures collected from social media indicate that
each individual model produces good recognition results. Furthermore, a combined approach incorporating
appearance, geometric and semantic features significantly outperforms the state of the art in this domain,
achieving 96.7% classification accuracy.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Sharing images in social media (Facebook, Flickr, Instagram, etc.)
is gaining rapid popularity in our modern lives. With universal access
to mobile cameras and internet access almost everywhere in the
world [1], millions of photographs are being constantly captured and
shared to social media. As such, there is great demand for automatic
annotation of photos to navigate and perform retrieval on such social
collections at scale. Classification of personal photographs spans a
broad spectrum of concepts and entities, from people to activities,
from scenes to food or abstract concepts.

We focus our attention on one particular important aspect, which
involves analyzing the social relationships among the subjects of a
photograph. People seldom pose with strangers [2], and recognizing
who they take pictures which constitutes the first step in analyzing
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the social relation (kinship, friends, etc.) in a given group photo. A
quick search on Flickr and Instagram using the keyword “family”
confirms that people not only possess family photographs but are
keen on labeling them as such. This has further inspired us to cre-
ate an automatic method for classifying images containing groups of
people into family and non-family photographs.

As illustrated in Fig. 1, there are several common differences that
can be observed between family and non-family photos. First, peo-
ple with a kinship relation usually share similar facial attributes and
their facial appearance is much more similar than that of people in
non-family photos. An automated method to incorporate physiolog-
ical similarities of faces can be expected to have a direct advantage
toward the task from such a capability. Second, the spatial distribu-
tion and physical characteristics of individuals in two photo cate-
gories are distinctive. For example, people in family photos usually
stand in a cascaded pattern and exhibit irregular height distribu-
tion. The age distribution of people in family photos is usually wider
than people in non-family photos. There also exist unique observ-
able phenomena related to composition of posing patterns in family
photos. For example children usually stand in front of adults, and
elder people tend to stand in the center. On the other hand, friends
in non-family photos stand in random patterns and their ages vary in
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Fig. 1. Examples of family photos (first row) and non-family photos (second row). The similarity of appearance, and the arrangement of people in a group photo reveal the type
of the photo. In general, family members usually stand in a cascaded way and are more similar in their appearance.

a smaller range, since people tend to make friends within their age
group. Third, the choice of environment, event and general context of
a given photo provides additional cues as to what group of people in
represented in it. For example, it is highly unlikely for family photos
to be taken in a bar or club, whereas it is common for friends to snap
pictures together in such environments. Based on this type of obser-
vations, we propose a model for recognizing family photos which
fuses different kinds of discriminant features in a unified framework.

The contributions of this work include the following: (1) We
propose a new geometry feature which captures people’s standing
pattern at the scene level. The proposed geometry feature is purely
based on the relative position of people in the image. This is different
from previous works [2,3] where age, appearance feature, and gender
are used to analyze the photo. Our geometry feature is used to repre-
sent the relative position of individuals in the photo. As a result this
proposed geometry feature is very robust and efficient to extract. The
classification accuracy obtained by using only the geometry model
is more than 87.0%. (2) We propose an appearance feature which
can capture facial similarities of people. Compared to our previous
framework [4], the facial appearance descriptor is extracted using a
convolutional neural network trained on the FaceScrub dataset [5].
We demonstrate that this yields improved recognition performance
in comparison to using hand-crafted features. (3) In addition to
geometry and appearance features, we also use semantic informa-
tion to discriminant two categories. We study the performance of
semantic model system in this context. Finally, we propose a sim-
ple fusion scheme to combine all three approaches together, yielding
even further improvements to performance.

We conducted experiments on a dataset containing thousands of
group photos obtained from Flickr. While each proposed represen-
tation proved valid for the task, they demonstrated to carry com-
plimentary information. The experimental results demonstrate that
fusing geometry, appearance model, and semantic context informa-
tion yields an improvement of 3.3% over the current state-of-the-art
for family photo classification.

2. Related work

Photos with groups of people can provide many meaningful social
context information in the photo [6]. These contextual features can
help interpret demographic information, such as people’s age and

gender. Their experimental results demonstrated that using the con-
text information can help improve the performance of event recogni-
tion. This work showed that context information extracted from the
group photo can also aid demographic information perception.

Instead of estimating general demographic information (age and
gender), other works also attempted to estimate the pairwise rela-
tion between individuals in a given photo. Singla et al. [7] used
rule-based Markov Logic Network to detect and identify possible
social relation of different individuals. Based on the general knowl-
edge, such as parents are older than their children, and the gender of
spouses are different. They used different constraints in the proposed
framework. MC-SAT algorithm [8] was applied to combine hard and
soft constraints to predict relationship between different individuals.
Wang et al. [2] utilized pairwise facial features calculated from indi-
viduals within the group photo to identity person and estimate social
relations. These pairwise features are extracted from each face pair.
Pairwise height difference, age difference, and closeness are used
as the social context feature. Their experimental results illustrated
that social feature can help improve the recognition performance.
Chen et al. [3] proposed a sub-graph learning based approach for
group photo classification. They tried to classify the group photos
into two general categories: family photo or non-family photo. In
their work, different subgraphs were built to characterize social rela-
tionships. Age, gender, and pairwise distance between individuals
were used to construct the social subgraphs’ set. The feature of a
given group photo is constructed by calculating the distribution of
extracted subgraphs corresponding to the pre-trained subgraph set.
SVMs [9] was used as the classifier to determine the category of the
given photo [10]. However, their proposed framework is mainly built
from age and gender information; facial similarities between people
are not measured. As illustrated in their experimental results, when
people have similar age and gender, their framework may not work
well, such as the classification between photos with siblings and the
photos with the classmates. Their experimental results also demon-
strated that using general feature extraction (e.g., PHoG [11]) from
the global photo did not work. In our previous work [4] which targets
the family photo and non-family photo categorization problem, we
proposed one fusion model with geometry and appearance feature.
The geometry is built purely based on people’s face potions. It is used
to capture the global standing pattern of individuals in a photo. This
is different from measuring individuals’ pairwise distance. Since our
geometry model only uses the location information, the scheme is
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very efficient and simple to implement. Dense SIFT [12] feature with
Modified Hausdorff distance (MHD) [13] is used to measure the facial
similarities between people in the appearance model.

In this work, we aim to classify the photo into family photo and
non-family categories same as previous works [3,4]. The geome-
try model advocated in our previous work [4] is also adopted in
this paper. Meanwhile, we also advocate a new mid-level appear-
ance feature for representing facial similarities in the group photo. In
the recent years, feature representation learning has demonstrated
superior performance in a variety of visual recognition tasks, such as
image classification [14–16], object detection [17], and image seg-
mentation [18,19]. Compared to our previous advocated model [4],
we adopt Convolutional Neural Networks (CNNs) as the basis to mea-
sure the facial similarities instead of using manually-crafted feature
(SIFT [12] or SIFT after processing [20,21]). To improve the match-
ing efficiency, instead of using Modified Hausdorff distance, L1 norm
is applied to measure the similarity between faces. The performance
obtained using single appearance model is more than 90.0%. Further-
more, not limited to the low level and middle level information, we
also use high level semantic features to discriminate different image
categories. As far as we know, this is the first time that semantic
information is applied in the family photo analysis task. We also fuse
these different models together to improve the recognition perfor-
mance. Experimental results demonstrate that fusing multiple cues
extracted from the group photo can help improve the recognition
performance. In general, compared to our previous work [4], in this
paper, we advocate a new appearance model based on deep neural
network and fuse the semantic information in the final classification
model.

The structure of the whole paper is organized as follows: the pro-
posed framework is presented in Section 3, where three different
models are introduced. Section 3.1 presents the geometry model. The
appearance model is described in Section 3.2. Section 3.3 reports the
details of the general framework for extracting contextual semantic
information. The experimental setting and results are presented in
Section 4, and finally we give conclusion remarks.

3. Our approach

In this work, three different cues are extracted from a group
photo to recognize family category. Afterwards, a fusion scheme is
applied to fuse these cues together. The features aim to characterize
the photo in different aspects. Fusion results demonstrate that these
features are complementary to each other. These models also help
us have a further understanding of the group photo classification
problem.

3.1. Geometry model

Unique spatial distributions and patterns of people are typically
observed that correlate with the relationship of the individuals cap-
tured in a photograph. These patterns can be in part described in
terms of the physical distance difference between individuals [3],
variations in height [2], or the physical proximities in the geometry
of the people standing in a photo (such as pairwise distance between
people). As indicated in Fig. 1, the height differences and the rela-
tive position vary between categories. These height differences are
often associated with human relationship information, such as there
is usually a distinct height difference between the parents and their
children. The standing position in the photo can also reveal their
social roles: for example, grandparents of the family usually stand in
the group center, whereas the parents stand in the back of the chil-
dren in most situations. In non-family photos, the height difference
of people is muted, as the age gap is typically reduced. The physical
proximity of people within the non-family photo is often different

from family photos. Measuring pairwise distance and the height dif-
ference between people is the most commonly used approach. Wang
et al. [2] calculated the Euclidean distance between face pair to con-
struct social features. In Ref. [6], the distance between faces’ centroid
and each particular face is used as one of the contextual features to
estimate the demographic information from the group photo. Chen
et al. [3] counted the number of people between one people pair as
the pairwise distance measurement to build the social subgraphs.
Compared to these frameworks, instead of measuring the pairwise
distance, our geometry feature is extracted at the global scene level
to capture the overall standing pattern of the group people. The
extracted feature can be directly used in the photo categorization
problem. This scheme is much more efficient in characterizing the
global standing pattern than other solutions, such as Minimal Span-
ning Tree (MST) which was used in [6]. While it is true that MST could
be used to link all the faces in a picture, it not clear how such global
representation would be computed. In Ref. [6], MST was used as a
mean to compute the degree of each individual vertex (face), and not
as a global descriptor for the group of all faces in the image. One lim-
itation in using MST as a descriptor for our problem is that, given a
set of vertices in a graph (our face points), there could be more than
one MST if not all the edges have unique weights. Any representa-
tions based on MST would suffer from such lack of a deterministic
structure.

3.1.1. Polygon construction
Our geometry feature is based on a polygon formed by the lines

connecting the locations of people in the photo. Given a set of points,
many types of polygons can be constructed. In our framework, our
goal is to capture the contour shape of the group people’s stand-
ing patterns in the photo. Also, the contour should capture people’s
standing difference between two different categories (family and
non-family) as listed in Fig. 4. Meanwhile, our descriptor should have
the following properties: (a) invariant to shift in the order of poly-
gon vertices and the rotation of the image,(b) robust to variations in
photo resolution,(c) unique and deterministic given an input image
(unlike the MST which could produce different representations given
the same input image), and (d) efficiency. The time complexity of our
proposed model is O(n log(n)).

The entire extraction pipeline is illustrated in Fig. 2. Face loca-
tions of individuals in the group photo are used as the vertices to
formulate the polygon. Faces are detected based on the algorithm
proposed by Viola and Jones [22]. Then, a convex hull [23] is applied
to all vertices to construct the primary polygon. Our observations
indicate that fortunately, the convex hull of these points, in gen-
eral, can approximate the shape of contour of the standing pattern.
In some case, it is exactly the shape of the contour as illustrated in
Fig. 3. Therefore, our solution (motivated by the above key observa-
tions) is given on the top of convex hull. It is known that convex hulls
have been useful for many other applications, such as in computer
visualization [24], path planning [25], shape matching [26], crystal-
lography [27], and cartography [28]. In this work, convex hull is used
as the basis to extract the geometry feature.

Given a set of points S in the Euclidean space, the convex hull is
the smallest convex set that contains S. Each point si in S is associated
with a non-negative weight wi, then all non-negative weights sum to
one. This can be calculated as follows:

{
n∑

i=1

wisi|(∀i : wi ≥ 0) ∧
n∑

i=1

wi = 1

}
, (1)

where we assume that there are n different points in set S. Because
the photos used in our work are collected from the unconstrained
environment, the distribution of people within a group photo will
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Fig. 2. An illustration of extracting geometry feature of the given group photo. In our geometry feature extraction pipeline, each vertex on the polygon corresponds to one face in
the group photo.

have a high degree of variation. The constructed polygon using con-
vex hull cannot guarantee that all faces are located on the polygon.
In fact, the polygon is built by the convex hull, which minimizes the
perimeter, leaving the possibility that points are lying on or within
the constructed polygon. Let us assume that there are n individu-
als standing in one photo. After applying the convex hull, we can
build one polygon which has m sequential vertices enclosing these
n points, where m <= n. Since we need to characterize the geom-
etry shape of standing pattern of all people, our next step is to add
remaining n − m vertices to the constructed polygon.

Let us assume that the coordinates of sequential ver-
tices of the polygon built by the convex hull are S =
[(u1, v1), (u2, v2), . . . , (um, vm)]. The n − m remaining vertices are
S′ = [(u′

1, v′
1), (u′

2, v′
2), . . . , (u′

n−m, v′
n−m)]. To include these remaining

vertices to the current polygon without abruptly changing the struc-
ture of the constructed polygon, for each point in S′, we locate its
two closest sequential vertices in set S. Afterwards, the new polygon
is built based on their relative positions. Each point (u′

i, v′
i) can be

considered as the node lying between two adjacent points (uj, vj)
and (uj+1, vj+1) in set S. It means that any point (ug, vg) in the 2D
space can be represented by

ug = a • uj + (1 − a) • uj+1,

vg = a • vj + (1 − a) • vj+1, (2)

where a ∈ [0, 1]. Given the point (u′
i, v′

i), to locate its two nearest
vertices in set S, we measure the Euclidean distance. The distance
between (u′

i, v′
i) in S′and (ug, vg) can be calculated by

D =
√

(u′
i − ug)2 + (v′

i − vg)2. (3)

To find its two nearest neighbors lying on the constructed polygon
for the given point (u′

i, v′
i), the derivative of D with respect to a is cal-

culated, which is ∂D
∂a

= 0. Then we can obtain a, which is represented
by

a =
(uj − uj+1)(ug − uj+1) + (vj − vj+1)(vg − vj+1)

(uj − uj+1)2 + (vj − vj+1)2
. (4)

Obtaining a, we can measure the distance D between the (u′
i, v′

i)
and the sequential vertices in S based on Eq. (3). Based on the
calculated distances D, we can get the minimum distance. This mea-
surement can help locate two sequential corresponding vertices in
S. We name this procedure “convex hull post-processing”. This post-
processing step can help build the comprehensive polygon where all
faces are located as vertices on the polygon. To illustrate the whole
procedure, we have listed several examples in Fig. 4. These exam-
ples also can illustrate people’s standing difference between two
categories truly exists.

Fig. 3. Examples of group photo with the contour generated by applying convex hull directly.
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Fig. 4. Illustrations of constructed polygon based on individual arrangement in a photo based on our approach. From the constructed polygons, we can see that there is a significant
difference between people arrangement of family photo and non-family photo in most cases.

3.1.2. Geometry feature extraction
The constructed polygon is used as the basis to extract geometry

feature. The extracted geometry feature is directly used to describe
people’s standing pattern. In this work, we propose a mid-level
geometry feature based on Fast Fourier Transform (FFT) [29]. The
whole feature extraction framework proceeds as follows:

(a) Calculate the center of the 2D polygon.

ucen =
1
n

n∑
i=1

ui,

vcen =
1
n

n∑
i=1

vi, (5)

where (ucen, vcen) indicates the centroid of the polygon. (ui, vi)
is the coordinate of vertices on the polygon. n is the number
of vertices (number of individuals).

(b) After obtaining the centroid, we divide the angle around the
polygon center into K folds evenly. This can be represented as

hk =
2p
K

∗ k, k ∈ {1, 2 . . . , K}. (6)

hk is the angle corresponding to the kth ray going through the
center to the edge of the polygon. K is the total number of rays
casting from the centroid. In our work, K is set to 64.

(c) Given the origin (ucen, vcen) and angle hk, K rays are casted
radially from the origin with an equal angular interval. After-
wards, the distance between the perimeter of the polygon and
the center is calculated along the specified direction hk. As
illustrated in Fig. 2, L(hk) denotes the distance between the
original centroid (ucen, vcen) and the perimeter along the ray
oriented along hk.

(d) After obtaining the ray vector L, we calculate Fast Fourier
Transform (FFT) for each ray. Fourier transform is used to
convert the vector from its original space domain to a repre-
sentation in the frequency domain. An FFT rapidly computes
the Fourier transformation by factorizing the Discrete Fourier

Transform matrix into a product of sparse factors [30,31]. We
adopt FFT method in this paper due to its fast computation
speed, effective representation capability, and desired satis-
factory performance. These advantages have been demon-
strated in our experiments. For calculation details, please
refer to work [30]. FFT has been used previously in several
shape representations [32,33].

Then the amplitude spectrum is extracted and normalized. Top T
amplitude spectrum values are used as the geometry feature to rep-
resent the geometry information for a given group photo. Based on
our experimental investigation, T can be set to a value around 50 typ-
ically. Using amplitude as the feature is invariant to many influences,
such as the shift in the order of polygon vertices and the rotation
of the image. Normalization can also deal with variations in pho-
tos’ resolution. These calculations are very helpful for characterizing
the geometry of similar spatial distribution of people across pho-
tos with different resolutions and orientations. Our geometry feature
can capture the similarity in their arrangement effectively.

In general, the idea of our geometry feature is different from pre-
vious approach of geometry model used in object recognition [34]
and face recognition [35,36] where shape is mainly used to describe
the geometry information of one single object. Whereas, our advo-
cated geometry feature aims to encapsulate the global view of people
in the group photo. Meanwhile, we think there is certainly more than
one model to formulate the geometry descriptor for recognizing fam-
ily photo. Our proposed geometry model is based on considerations
of the efficiency in computation and the accuracy in performance.

3.2. Appearance model

To measure the similarity of people in the group photo, we adopt
deep learning feature scheme to extract facial features. One advan-
tage of this deep learning model-based approach is its improved
capacity for face representation in comparison to hand-crafted
features (LBP [37], SIFT [12], etc.). As demonstrated in previous
works in facial image analysis [38–41], convolutional neural net-
work(CNN) [42] obtains a very good result on popular benchmarks,
such as in the Labeled Faces in the Wild (LFW) [43] and Youtube Faces
(YTF) [44]. The good performance of convolutional neural network is
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Fig. 5. The proposed architecture of CNN for learning face representation. To be concise, only three convolution layers are shown here. As indicated in the figure, feature maps
extracted from the second fully connected are used the facial appearance feature representation.

likely due to several reasons. One reason is because of the availabil-
ity of search engine for crawling large amounts of photos. Another
is the availability of scalable computation resources, especially GPU
technology.

Based on existing studies in face identification and related works
in measuring the similarities between people with kinship relation,
we attempt to apply deep models in extracting appearance fea-
tures in group photo. Particularly, we apply CNN as the basis to
extract middle-level appearance feature to characterize facial simi-
larities in group photo. In our proposed pipeline, CNN is trained for
face identification task. During the training phase, samples from dif-
ferent individuals are labeled with different labels that distinguish
personal identity. As studied in previous works [45–47], age plays
an important role in measuring the facial similarity, especially in
face representation in kinship [48]. In our framework, the influence
due to age is also considered in the proposed appearance model.
The whole framework is illustrated in Fig. 6. The whole appearance
model mainly includes three different steps: Pairwise Feature (PF)
Extraction, codebook construction and DOGF feature extraction.

3.2.1. Pairwise Feature (PF) Extraction
To measure the appearance similarities among people in the

group photo, CNN is applied as the basis to build the framework. In
the beginning, faces and fiducial points are detected [22,49]. In this
work, all facial images are aligned based on eyes’ coordinates. The
basic structure of CNN used in our framework includes five convolu-
tional layers, followed by two fully connected layers and a softmax
layer. All face images are resized into the same size 227 × 227 with
three channels (RGB). The first convolutional layer is calculated by
the convolution between the input RGB image with 96 different ker-
nels with a stride of 4. The size of these 96 kernels is 11 × 11 × 3.
The size of the sequential convolutional layer filters are 5 × 5 × 256,
3 × 3 × 384, 3 × 3 × 384 and 3 × 3 × 256. Along with these con-
volutional layers, there are two fully-connected layers. The output
neurons obtained from these two fully connected layers are 4096
and 530 respectively. In the proposed framework, max-pooling lay-
ers are applied after each convolutional layer. The structure of each
max-pooling layer is set as 3×3 with a stride of 2. ReLU function [50]
is applied as the activation function of all convolution layers. The

Fig. 6. An illustration of the proposed DOGF feature extraction. To be concise, only one face pair is listed here. Other facial pairs all follow the same processing procedure. In the
codebook generation step, two colors represent different classes (family and non-family), which are represented by green and blue. In each category, four codebooks are learned
from corresponding pairwise feature set divided by different age gaps.
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Fig. 7. Top five most discriminative semantic concepts associated with family (top) and non-family (bottom) photos. Under each photo we report the score of the corresponding
semantic model. Images with red border represent mislabelings of the classifier.

whole framework is trained using back-propagation along with the
softmax function as indicated in Fig. 5. CNN generally includes con-
volution and pooling operations. In the following, we introduce these
operations briefly.

Convolution layers. Each neuron in the convolution layer is calculated
by the convolution between the local receptive field in the preceding
layer and the learned kernels (weights). In general, neurons in the
same feature map share the same weights but are calculated from
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different input receptive fields. An activation function is applied at
the end of each layer as follows:

el
j = 0

(
N∑

i=1

el−1
i ∗ wji + bl

j

)
, (7)

where el−1
i is the input neuron from l − 1 layer, N is the total number

of input neurons, andbl
j denotes the bias. * denotes the convolutional

operation. 0 is the activation function where ReLU function is used
in this work.

Pooling layers. In general, pooling layer downsamples the input fea-
ture maps. Pooling layer only changes the size of the input maps
while not altering the number of input feature maps. The schemes
implemented in the pooling layer usually include averaging, calcu-
lating the maximum, or using learned combinations of the neurons
within the given block [51]. In our proposed framework, max pool-
ing is applied. This operation is used to maintain specificity and
is very efficient in characterizing the feature for specific topics. Its
mechanism is similar as mammalian visual cortex [52].

In this work, Caffe [53] is applied to build the deep neural net-
work to learn deep facial representation. For weights initialization,
we use a Gaussian distribution with zero mean and a standard devi-
ation of 0.01. In the beginning, zeros are used as the initial value for
the biases. In each iteration, all the weights are updated based on a
batch size of 128. The momentum is set as 0.9 and the weight decay
is set as 0.005 for all layers. The FaceScrub dataset [5] is used to train
the whole network.

In this work, feature maps extracted from the second fully con-
nected layer are used to represent the facial characteristics. Assum-
ing the representation for two facial images are A = {→

a1, · · · ,
→
ae}

and B = {
→
b1, · · · ,

→
be}, where e is the number of feature dimension.

PF = |A − B| is defined as the pairwise feature (PF) to measure the
facial similarity between a pair of face images. For a group photo
including n different individuals, there are J = C2

n different face pairs
to compare. The pairwise feature set for a group photo including n
faces can be represented as PFphoto = {PF1, PF2 . . . , PFJ}.

3.2.2. Facial codebook construction
There may be many different kinship relations in a given photo.

Age progression usually restricts the performance of measuring facial
similarity with age gaps. Considering the age influence, we pro-
pose one codebook scheme using the extracted pairwise feature and
age label information. There are seven age categories labeled in the
dataset, which are [1, 5, 10, 16, 28, 51, 75]. These age labels repre-
sent infant, kid, school-age child, teenager, youth, middle-aged adult
and elder. Our appearance model is used to measure the similarity
between facial pairs. Age gap is calculated between two compared
individuals. We have defined four different age gaps, which are
Gage < 10, 10 ≤ Gage ≤ 20, 20 < Gage ≤ 40, Gage > 40. In the test-
ing phase, the age of each person is estimated using the scheme
proposed in Guo et al. [54]. For age estimation, we follow the exper-
imental setting as discussed in [3] where cross-validation is used.
There are several reasons why we use bio-inspired features: a) an
intuitive but important descriptor to capture the difference in age
estimations; b) convincing performance in many real-world face
datasets (as demonstrated in experiment results listed in previous
works [54–56]). Our age estimation pipeline can obtain the estima-
tion accuracy around 98.0% for seven age categories classification.

Based on the age gap, in the training stage, pairwise feature set
PFphoto can be divided into four different groups. Within each divided
pairwise feature set, K-means [57] is used to learn facial similarity
codebooks. Each codebook has H different codewords. In this work,
H is set to 9. The analysis of different values’ setting is discussed
in Experiments section. We have two different categories, which

are family and non-family. Codebooks for each category are learned
separately. These two codebook sets are represented as 
Gmh and

G′

mh(h = 1, 2 . . . , H)(m = 1, 2 . . . , M), where m is the number of age
groups and h denotes the number of codebooks. In this work, M is set
to 4 since we have four different defined age gaps. For different group
photos with different relations, age gaps calculated from different
face pairs can vary a lot, construction of codebook groups based on
age information is therefore necessary.

3.2.3. DOGF feature extraction
For jth face pair in the group photo, we calculate pairwise feature

PFj and estimate the specified age gap group m. Based on the esti-
mated age gap, we can find its two corresponding codebooks, 
Gmh

and 
G′
mh. Then we calculate the pairwise cosine similarities between

PFj and (
Gmh, 
G′
mh). This can be represented as 
dj = (d(PFj, 
Gmh),

d(PFj, 
G′
mh)). Because age codebooks used for each facial pair with dif-

ferent kinship relations are not the same, the similarity feature calcu-
lated using our proposed scheme can also capture the co-occurrence
of different relations in these photos.

For a group photo with n different individuals, C2
n different pair-

wise cosine similarity facial features can be extracted. Our appear-
ance model aims to advocate a appearance descriptor to measure the
facial similarity of people in group photo. Our appearance feature for
representing facial similarities in the given group photo are named
as Degree Of Group similarity Feature (DOGF). Based on the obtained
C2

n pairwise similarity features, DOGF for one group photo can be cal-

culated as 
F = 1
J

J∑
j=1


dj, where J = C2
n . 
F is directly used as appearance

feature for classification. In the testing phase, the age of the given
face image is estimated using the scheme proposed in [54].

3.3. Semantic model

We observe that the context in which a picture is taken can also
represent a valid cue to predict whether it is a family photo or not.
Intuitively, the places people go to and the activities they perform
tend to be different when in the company of family members as
opposed to with their friends. For example, it is more likely for peo-
ple to perform a sport activity with friends rather than family, while
lunches at someone’s house would seem more likely to be family
gatherings. Based on this observation, we investigated whether the
semantics of the context in which pictures are taken hold any cor-
relation with the group of people represented in the picture (family
or not family). We therefore trained a set of 764 visual semantic
models from a set of half a million images downloaded from the
web, following the framework introduced by the IBM Multimedia
Analysis and Retrieval System (IMARS) [58]. The training dataset
of images was manually annotated and organized in a hierarchi-
cal faceted taxonomy, which includes concepts related to “objects”,
“scenes”, “ people”, “activities” and “events”. Each model SCi is an
ensemble of SVMs with linearly approximated w2 kernel, learned on
top of bags of examples randomly sampled from the set of manually
labeled web images. Each individual SVM uses one of several differ-
ent visual descriptors including color histogram, color correlogram,
wavelet texture, edge histogram, gist, and lbp histogram, extracted
at multiple different regions of the image, in a similar fashion to the
spatial pyramid framework. The score for a Semantic Concept i on in
a new image x is then

SCi(x) =
Ni∑

k=1

wkbk(x) (8)

SCi(x) is the weighted sum of the scores on x of the individual SVMs,
which we define base models bk in the ensemble. The weights wk

are learned via cross-validation during training. Finally, the score is
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Fig. 8. Examples of group photos used in our experiment. (We can see the diversities of the family.)

normalized to the [0, 1] range by fitting a sigmoid on the prediction
scores of the validation set.

For our domain of family pictures, we map each photo x to the
semantic space by concatenating all the models scores into a N-
dimensional Semantic Model Vector [59], that is, a vector in which
each dimension has a semantic meaning corresponding to the pre-
diction of a visual classifier to the given picture

SMV(x) = [SC1(x), . . . , SCi(x), . . . , SCN(x)]

We then use this concatenated vector as a feature on top of which we
train an SVM model to distinguish between family and non-family
pictures, as explained in the following Section. The experimental
results described in Section 4 confirmed that the visual semantics of
a picture, even if not as strong as other features, indeed can be used
to predict whether a picture is a family photo or not. Furthermore, it
proved to be a complementary cue which can be combined with the
other descriptors to boost recognition performance.

In order to qualitatively evaluate our choice of visual classifiers
and determine the most discriminative ones for family pictures,
we trained two linear SVMs on top of the Semantic Model Vector
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Fig. 9. Histogram illustration of number of people included in group photos used in
the whole experiment.

representation: one using family pictures as positives and non-
family ones as negatives, and the other inverting the roles. In Fig. 7
are reported the top five weights of the SMVs, family in blue and non-
family in red. The larger the weight, the higher the association of a
visual concept with a class of pictures versus the other. For each cate-
gory, we report in the Figure the top three and bottom three pictures
from our dataset, ranked according to their visual classifier scores
(shown below each photo). The visual classifiers are not always per-
fect and sometimes might make errors, which are highlighted with
a red border in the Figure. We notice however that even when the
exact semantic is lost, the discriminative power of the classifier can
still contribute to the classification of a picture. For example the first
three pictures of the first row do not contain a boat, but the classifier
is picking up a correlation between family photos and settings close
to bodies of water. It is interesting to observe how larger groups and

Table 1
Classification results using different schemes on Dataset One used in [3].
Fusion Scheme I indicates the fusion scheme based on geometry and
appearance information. Fusion Scheme II indicates the fusion model using
appearance, geometry and semantic information together. Bold text indi-
cates the results obtained based on the newly proposed scheme.

Method Accuracy

Chen et al. [3] 90.3%
Wang et al. [4] 93.9%
Geometry (Ours) 86.3%
Appearance (Ours) 91.0%
Semantic (Ours) 75.0%
Fusion Scheme I (Ours) 95.3%
Fusion Scheme II (Ours) 96.0%

Table 2
Classification results using different schemes on Dataset Two. Fusion
Scheme I indicates the fusion scheme based on geometry and appearance
information. Fusion Scheme II indicates the fusion model using appear-
ance, geometry and semantic information together. Chen et al.∗ indicates
the assumption that approach [3] could classify the newly added images on
the collected dataset with 100% classification accuracy. Bold text indicates
the results obtained using the newly proposed scheme.

Method Accuracy

Chen et al.∗ [3] 91.7%
Wang et al. [4] 93.4%
Geometry (Ours) 87.3%
Appearance (Ours) 90.2%
Semantic (Ours) 76.3%
Fusion Scheme I (Ours) 95.1%
Fusion Scheme II (Ours) 96.7%
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vehicles are more likely to relate to family pictures, perhaps to com-
memorate large family gatherings and family road trips. On the other
hand, it would seem that people tend to eat out at restaurants and go
to sporting events with friends rather than family. Even the rooms
of the house can become an indicator of who we are taking pictures
with: in the living room with friends, in the bedroom with our family.

3.4. Classification

Our goal is to classify a given group photo into two different cat-
egories, family or non-family photo. This problem can be regarded as
a binary classification problem. We use SVMs [60] with RBF kernel as
the classification method for our system, applied on top of each feature
separately. Following the optimization scheme advocated in [61], we

employed a five-fold cross validation approach and grid search over
the parameters space to estimate C and c for the RBF kernel.

There are three different features in our approach, each feature
can be considered as a weak learner toward the final task. To fuse
different features together, many approaches can be applied, such as
feature level early fusion and score-level late fusion [62,63]. In this
work, we apply weighted fusion based on the output of each RBF ker-
nel obtained in each individual model. The fusion is formulated as
follows:

Rc(x, y) =
∑

m

wm e
− ||x−y||2

2s2
m , (9)

(a)

(b)

Fig. 10. (a) Illustrations of correctly classified photos using the geometry model. (b) Examples of misclassified photos using geometry model.
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where Rc(x, y) is the combined kernel value for samples x and y,
and sm is the RBF parameter of kernel m. wm is the weight associ-
ated with the model (appearance, geometry, semantic information).
In this work, wm is obtained via cross-validation on the training
data, following the scheme of Ayache et al. [64]. x and y are the
feature vectors associated with the model. In our problem, there
are three different models. We refer the reader to [64] for specific
details.

4. Experiments

In this Section, we describe the details of the dataset used to
evaluate the proposed approach for family photo classification and
illustrate the performance obtained by different models. The exper-
imental results and analysis are also demonstrated. In order to
provide a deeper understanding of the proposed model, we report
classification results obtained from different models individually,

(a)

(b)

Fig. 11. (a) Illustrations of correctly classified group photos based on appearance model (DOGF). (b) Illustrations of the photos misclassified using geometry model and correctly
classified by the fusion model based on geometry and appearance cues.
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e.g., geometry, appearance and semantic model. We finally compare
our proposed fusion framework with previous works [3,4] under the
same experimental setting.

4.1. Dataset

The first dataset used for family photo classification was collected
by Chen et al. [3]. This dataset includes 1167 family photos and 1263
non-family photos. We refer to this as “Dataset One”. Because of
the unbalance in the number of examples between the two differ-
ent categories in Dataset One, we enhanced the dataset by adding
more photos to each image class. The expanded dataset we collected
includes 1420 group photos for each of the two categories (family
and non-family). We name the expanded dataset as “Dataset Two”. In
order to collect the dataset, we followed the same collection scheme
as Chen et al. [3]. All images came from a public dataset collected
by Gallagher and Chen [6]. This public dataset was mainly collected
from social media (e.g., Flickr) using keywords, such as “family por-
trait” and “group photo”. The original public dataset provides some
initial labels, such as family, group, and wedding. However, from
the perspective of our classification problem of interest, the dataset
presented some labeling errors. For example, some family photos
appeared in the group category, and several non-family photos were
included in the non-family photo category. We corrected such mis-
labelings in our newly extended and organized dataset with the help
of human annotators. Five people were involved in labeling the new
extended dataset. A photo was labeled as family photo or non-family
photo only if all members agreed on its label. Otherwise the photo
was not used in the experiments. In this paper, we don’t consider
group photos where family members and friends are mixed. We
also don’t consider the family with adopted children. Our dataset
does not include such samples. As illustrated in Fig. 1, the collected
dataset presents a wide variety of subjects in different poses includ-
ing sitting, standing or laying. It is also a very challenging dataset
for measuring facial similarities because of face occlusions, changes
of facial expressions, and even faces with sun-glasses. Although the
images are collected using English tags, they are still very representa-
tive due to its high diversities, i.e, Asian, Caucasian, African American,

etc.(illustrated in Fig. 8). Moreover, the dataset has a very wide range
of the number of people included in the group photo as illustrated in
Fig. 9. The number is from 3 to 37.

The group photos used in the experiment all include three or
more people. For photos with two people, standard kinship verifica-
tion approaches [65–68] can be applied to determine the pairwise
relation. Our work aims at determining the category of group photos,
which is different from a strict kinship verification problem or from
the work of Fang et al. [69] where a corresponding family is predicted
when given one probe face image. In general, the scope of this work
is to recognize the category of group photo (family or non-family),
not that of working on individual facial images.

4.2. Experimental results and discussion

To evaluate the performance of the proposed framework, five-
fold cross validation is applied. For each fold, the accuracy is calcu-
lated as

Accuracy =
Ncorrect

Ntotal
× 100%, (10)

where Ncorrect represents the number of correctly classified photos
and Ntotal is the total number of samples in the testing set. The final
performance is calculated by averaging the accuracy obtained in dif-
ferent folds. We evaluate the performance of the proposed scheme
on Dataset One and Two. The experimental results are illustrated
in Tables 1 and 2. We also compare the performance of different
schemes on Dataset One used by Chen et al. [3] and Dataset Two.
We also draw the ROC curve for comparison as listed in Figs. 13 and
14. The experimental results demonstrate that the proposed scheme
outperforms previous works [3,4] significantly. As for these mis-
classified samples listed in [3], our algorithms can correctly classify
them as demonstrated in Fig. 17.

From the result, we can find that each separate model per-
forms well. Experimental results demonstrate that the discrimina-
tive pattern between two different categories truly exists and our
geometry model can capture these discriminatory information from

Fig. 12. Illustrations of the photos correctly classified using the semantic model.
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Fig. 13. Performance comparison of different models on Dataset One which is used in
work [3]. Fusion Scheme I indicates the fusion model using geometry and appearance
information. Fusion Scheme II indicates the fusion model using appearance, geometry
and semantic information together.

the given group photo. Our appearance feature DOGF also works
well in the unconstrained dataset. Although the images from the
dataset used in our experiment are collected from unconstrained
environments, the obtained performance is quite promising. The
appearance model alone can achieve a classification accuracy up
to 90.2% on the expanded dataset. This has improved the perfor-
mance compared to our previous model [4] based on SIFT feature
with Modified Hausdorff measure scheme. Our experimental results
also demonstrate that supervised deep learning model is efficient
in representing facial characteristics. Although contextual seman-
tic information by itself does not obtain a comparable performance
compared to the geometry and appearance models, it provides com-
plimentary information. In fact the Fusion Scheme II, which includes
such semantic information, further boosts the classification perfor-
mance. For example, in Dataset Two, the final accuracy after fusing
all different models is 96.7%, which is 3.3% higher than our previ-
ous model [4]. We have compared with the model proposed by Chen
et al. [3] on two datasets. Our model obtains 96.0% compared to
90.3% reported in [3] on Dataset One. Since Chen et al. [3] did not

Fig. 14. Performance comparison of different models on Dataset Two. Fusion Scheme
I indicates the fusion model using geometry and appearance information. Fusion
Scheme II indicates the fusion model using appearance, geometry and semantic
information together.

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Performance Comparison

Mean Distance
Our Approach

(a)
0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Performance Comparison

No Age
Our Approach

(b)

Fig. 15. (a) Performance comparison between mean distance and the proposed geo-
metric feature scheme. Mean distance indicates that we calculate the center position
of the polygon, then calculate the distance between the center to all the vertices in the
polygon. Afterwards, the calculated mean distance is used as the feature to classify the
photo category. (b) Performance comparison for different appearance models. No age
indicates that there is no age information used in appearance model. Our approach
indicates the proposed DOGF based appearance scheme.

release their source code, we assume that their approach can clas-
sify the images added to the expanded Dataset (Dataset Two) with
100% accuracy. With such assumption, their model would achieve a
classification accuracy 91.7%, almost 5.0% lower than our proposed
framework. Cross-validation in the training stage is also applied to
select the optimal parameters. We have listed the accuracy com-
parisons between different K values as illustrated in Fig. 16 (a).
The performance comparison with different numbers of codebook
setting used in the appearance model is illustrated in Fig. 16 (b).

One advantage of the proposed geometry model is that our geom-
etry feature extraction is purely based on the position pattern of the
people in the group. It performs very well in typical family photos
where people stand in a typical pattern, e.g., parents stand in the
back of the children and the elders stand in the center. However, our
geometry model does not work well in situations where individuals
are positioned in an atypical way, e.g. standing in a row as shown
in Fig. 10 (b). As analyzed in previous works [46,70], it is difficult to
measure the facial similarities of people with large variations in pose,
illumination, and age gaps. In Fig. 11 (a) and Table 2, we illustrate
how the proposed DOGF feature achieves a very satisfactory result in
discriminating the two different categories. Our appearance model
can also compensate with the failure cases produced by the geometry
model where family members stand in a less traditional way, such as
standing in a row. It also works very well in other difficult situations,
for example, when people sit around the table (e.g., dinner). Mean-
while, in cases where the appearance feature does not work, we can
rely on the geometry model. Our experimental results demonstrate
that these two information are complementary to each other.

To measure the performance of the advocated geometry model,
we also compare the proposed geometry feature with another base-
line where we calculate the distance between the centroid of the
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Fig. 16. (a) Performance comparison for different k values setting in the geometry
model. (b) Performance comparison between different numbers of codebooks used in
the appearance model.
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Fig. 17. Illustration of correctly classified samples by our scheme but mis-classified using [3].

polygon and all vertices lying on the polygon. We then get the mean
value of all these distances and use the mean distance as the feature
for classification. The comparison result is listed in Fig. 15 (a) and
demonstrates that the proposed geometry feature performs much
better than the baseline in characterizing the standing pattern of the
group photo.

For appearance model, we also compare the performance using
age information vs without using age information. As illustrated in
Fig. 15 (a), experimental results show that age information plays an
important role in the final classification result. Without employing
age information, the performance is very low. This result is consis-
tent with the findings of previous studies [3]. These results show that
the DOGF feature is not only very efficient but also quite effective in
measuring the facial similarity in group photo.

As demonstrated with examples in Figs. 7 and 12, we find that the
semantic information associated with the context (places, objects,
people and activities) in which the two categories of photos are taken
provides some insights on whether or not a picture is a family photo.
Family photos usually include larger groups and are taken inside
homes or, when outdoors, more likely within natural environments.
On the other hand, we find that pictures belonging to the non-family
category are more likely to be at sporting events or restaurants.
From the experimental results, we can observe that while the visual
semantic information by itself constitutes the weakest cue to dis-
tinguish family photos from other ones, it provides complimentary
information with respect to other features and can help improve
the recognition performance if integrated in an appropriate fusion
scheme. In this paper, we did not consider the family with adopted
children. When the family includes adopted children, the appearance
model is not reliable for such kinds of photos. However, the geom-
etry and semantic information would still help classify the photo
correctly.

5. Conclusion

We have developed a novel framework to automatically classify
family photos and non-family photos. Our work introduced multi-
ple contributions: First, we have proposed a novel geometry feature
to characterize the social relationship in a group photo. Second, a
face descriptor based on a deep neural network architecture is pro-
posed to measure similarities of individuals in a group photo with the
goal of estimating their relation. Third, semantic information about
the context in which the picture was taken is incorporated into our
model to further improve the recognition performance. Furthermore,
we have combined our multiple cues in a fusion scheme that can
increase the recognition performance by more than 6% compared
to each single model, demonstrating that the proposed features can
complement to each other. Our method achieves 96.7% accuracy on

a dataset, expanded over an existing one, containing thousands of
family and non-family pictures collected from social media.
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