
Heterogeneous Semantic Level Features Fusion for Action
Recognition

Junjie Cai†∗, Michele Merler‡, Sharath Pankanti‡ and Qi Tian†
†Department of Computer Science, University of Texas at San Antonio

‡IBM Thomas J. Watson Research
caijunjieustc@gmail.com,{mimerler,sharat}@us.ibm.com,qitian@cs.utsa.edu

ABSTRACT
Action recognition is an important problem in computer vi-
sion and has received substantial attention in recent years.
However, it remains very challenging due to the complex
interaction of static and dynamic information, as well as
the high computational cost of processing video data. This
paper aims to apply the success of static image semantic
recognition to the video domain, by leveraging both stat-
ic and motion based descriptors in different stages of the
semantic ladder. We examine the effects of three types of
features: low-level dynamic descriptors, intermediate-level
static deep architecture outputs, and static high-level se-
mantics. In order to combine such heterogeneous sources
of information, we employ a scalable method to fuse these
features. Through extensive experimental evaluations, we
demonstrate that the proposed framework significantly im-
proves action classification performance. We have obtained
an accuracy of 89.59% and 62.88% on the well-known UCF-
101 and HMDB-51 benchmarks, respectively, which compare
favorably with the state-of-the-art.

1. INTRODUCTION
Human action recognition has been one of the challeng-

ing problems explored by the computer vision community.
An action comprises a combination of semantic visual ele-
ments (people, objects, scenes) and motions, which are re-
lated to individual element movements or their interactions
with each other. Therefore both the static visual informa-
tion and the dynamics of the scene constitute necessary and
complementary information to recognize an action. A myr-
iad of works have been proposed to improve action recogni-
tion and classification performance [11, 21, 22], with efforts
driven by the release of increasingly larger and more chal-
lenging datasets [12, 13, 36].

Out of all the proposed approaches, dense trajectories
based methods with GMM codebook generation and Fish-
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Figure 1: Overview of the proposed action recogni-
tion framework combining heterogeneous semantic
level features. The semantic level of the extract-
ed decriptors ranges from low to high as we move
from left (low-level descriptors) to right (high-level
semantics).

er Vector encoding have achieved competitive performances
and have shown their effectiveness on this problem [11]. The
motion trajectory is capable of describing subtle movements
and is suitable for representing both the dynamics and ap-
pearance of a scene on a local level.

However, using only low level descriptors can not always
be sufficient for action recognition purposes. This is due
mostly to the gap with the semantics of an action at a glob-
al scale. Consider the example in Figure 2 showing two clips
from the UCF101 dataset: for some reason the HOF descrip-
tor of the two video clips is very similar, but on a semantic
level it is quite clear that the instrument being played is
completely different. Such limitation can be alleviated by
the use of a set of static Semantic classifiers, especially in
the case where some relevant concepts are part of the pool
(in the example, Grand Piano and Flute).
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Besides providing complementary information to low level
dynamic descriptors, using sets of Semantic models consti-
tutes also a way to transfer the knowledge accumulated from
the large scale annotated training data on top of which such
models were learned.

In this work, we propose to use descriptors at Higher
Semantic levels in combination with the low-level dynamic
ones. Figure 1 gives a conceptual view of the feature extrac-
tion process. First, we extract visual features at different
semantic levels: low-level dynamic trajectory features (e.g.,
histogram of oriented gradients (HOG) [15], histogram of op-
tical flow (HOF) [15] and motion boundary histogram (MB-
H) [11]), intermediate-level static deep features extracted
from one of the intermediate layers of a Deep convolutional
network trained on ImageNet, and high-level semantic fea-
tures in the form of concatenated predictions of two sets of
static visual classifiers trained from web images. The first
set contains 1,000 classes from the same Deep convolution-
al network as the intermediate level features, the other has
1,414 classes trained as ensemble SVMs from web images.

In order to mine and fully exploit the complementary
information among heterogeneous features, we explore the
features relationship via a selection of fusion strategies, of
which SVM based fusion proved to be the best performing.

While the use of deep features for action recognition in
videos has been introduced before [3, 8], the semantic anal-
ysis to the output of the final layer of the neural network
has not been yet fully explored.

The main contributions of this paper can be summarized
as follows:

• We propose to use high-level static semantic classifiers
to perform action recognition in videos.

• We propose a framework that jointly combines dynam-
ic trajectory features, static deep features and high
level semantic predictors for improving action classifi-
cation performance.

• Extensive empirical evaluations are provided to cor-
roborate the effectiveness of the proposed framework
in detail, which achieved an accuracy of 89.59% and
62.88% on the well-known UCF-101 and HMDB51 bench-
marks, respectively, which compare favorably to the
state-of-the-art.

The remainder of this paper is organized as follows. After
an overview of related work in Section 2, we describe the
proposed action recognition framework in Section 3. In Sec-
tion 4, the experimental results are presented and discussed.
Finally, we conclude in Section 5.

2. RELATED WORK
The complete literature on action recognition is quite ex-

tensive and beyond the scope of this paper. In this Section,
we focus on works closely related to our approach, mainly
covering systems which employ features of low, intermediate,
and high semantic level.

Low-level Features unlike static images, video data ex-
hibits different views of visual patterns, such as appearance
changes and motions with different boundaries, all of which
play an important role in action recognition. Therefore mul-
tiple descriptors are usually extracted directly from video
and each descriptor corresponds to one specific aspect of vi-
sual data. Researchers in action recognition widely made

video level dynamic featureextracted frames video level static feature
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Figure 2: Comparison between a “PlayingPiano”
clip and “PlayingFlute” video based on Fisher Vec-
tor HOF representation and static semantic fea-
tures. In this example, the two low-level trajectory
features are considered as a good match both by FV
equality and Euclidean distance consistency. How-
ever, they differ significatly in static semantic space.
Our proposed approach can distinguish between the
two since it can overcome the shortcomings of one
descriptor.

use of low-level features with BoW model. Typical low-level
features employed to recognize actions in videos include his-
togram of oriented gradients (HOG) [15], histogram of opti-
cal flow (HOF) [15] and motion boundary histogram (MBH)
[11], which are computed in local cuboids obtained around
detected spatial-temporal interest points or with dense sam-
pling schemes [16]. A combination of several features is
shown to further boost recognition accuracy by leveraging
fisher vector encoding. For instance, participants in THU-
MOS challenge [36] are encouraged to employ various kinds
of dynamic features to develop novel approaches for action
recognition to operate in realistic conditions [11, 34].

Moreover, a couple of works explored the integration of
multiple low level descriptors to generate semantics for ac-
tion recognition. Wang et al. [6] correlate interest points
together and construct an action unit set to represent all
actions classes with semantics. Liu et al. [22] use diffusion
maps to automatically learn a semantic visual vocabulary
from low-level features. In the above model, low-level trajec-
tory features are extracted and clustered into the codebook
via a generative process (e.g. GMMs), and then each fea-
ture is quantized and encoded into a high dimensional vector
(e.g. Fisher Vector). However, such representation suffers
from two major limitations, which are interconnected. On
one hand, similarly to all other low-level descriptors, the se-
mantic gap between the Dense Trajectories features and the
nameable semantics of an action at a global scale results in
a lack of interpretability of the results. This also limits the
generalization power of such descriptor to other domains,
which is lost in its intrinsic need to learn a codebook and
Fisher vector encoding parameters for each dataset in order
to obtain competitive performance. Hence, the vocabular-
ies or units above are not discriminative and representative
enough in larger video datasets, which limits their applica-
bility in different domains.

Intermediate-Level Features Besides low-level features, re-
cent efforts for action and event recognition in video have
been devoted to mining intermediate-level semantic repre-
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sentations. A number of researchers have been building a
variety of semantic concept detectors, such as those relat-
ed to people (face, anchor), acoustics (speech, music), genre
(weather, financial, sports), scene, etc. [6, 20, 33, 37]. Li-
u et al. [23] proposed to leverage attribute-based features
for action recognition. Yao et al. [24] jointly modeled the
attributes (i.e. actions) and parts (i.e., objects or poselets
related actions) by learning a set of sparse bases that are
shown to carry much meaning. Chen et al. [31] proposed a
concept discovery approach by investigating the event tex-
tual descriptions. However, most of such approaches require
copious labeled data to train specifically targeted interme-
diate concept or attribute classifiers, which involves a costly
annotation process.

Deep Neural Network There have also been some at-
tempts to leverage a deep neural architecture for visual recog-
nition. Deep features are generally extracted from interme-
diate layers of convolutional neural networks. They have
been shown to set the state-of-the-art in many applications
such as OCR [26], speech recognition [25] and object de-
tection [27]. Moreover, for action recognition, Karpathy et
al. [3] used raw video data as inputs instead of the hand-
crafted features and compared several ConvNets architec-
tures. Interestingly, their results indicated that the spatial
temporal features learnt from 1.1M YouTube videos could
not capture motion characteristics well enough to successful-
ly generalize to other datasets. The performance turned out
to be less competitive than hand-crafted trajectory-based
representations. Simonyan et al. [8] further explored how to
capture the complementary information from static extract-
ed frames and motion (optical flow) via deep ConvNets.

From a semantic standpoint, the output of the hidden lay-
er in a pre-trained neural network can be utilized to convey
discriminative semantic information with respect to the da-
ta from which it was trained. One popular example in this
space is the task of large scale image classification ImageNet
task [9].

Our work departs from the ones reported above in two as-
pects. First, the dynamic trajectory features are widely used
in action recognition and remain the central components of
video analytical systems that generated state-of-the-art re-
sults. We aim to efficiently combine the advantages of off-
the-shelf low-level dynamic trajectory features to improve
the recognition performance, without discarding them com-
pletely for an independently trained deep architecture. Sec-
ond, we investigate the use of semantics generated by static
deep and shallow visual classifiers which provide a comple-
mentary cue to further enhance the discriminative power of
action classifiers.

3. PROPOSED APPROACH
In this Section we provide a formal description of the pro-

posed framework, starting from the details of the heteroge-
neous semantic level features employed and then discussing
the different fusion strategies adopted to combine them.

3.1 Feature Extraction
Dynamic Dense Trajectory Features: Dynamic in-

formation is an important cue for human action understand-
ing from video. Therefore we extract the state of the art
improved dense trajectories features from input videos. To
describe motion, different types of motion feature descrip-
tors are computed in a spatial-temporal volume (i.e., spatial

size of 2×2 with temporal length of 15) around the 3D neigh-
borhood of the tracked points along the trajectory. Follow-
ing [11], each trajectory is described by a concatenation of
HOG, HOF, and MBH(along x and y directions) descriptors,
forming a 396-dimensional vector (96+108+96+96).

Fisher Vector (FV) coding, derived from Fisher Kernel,
was originally proposed for large scale image classification.
Compared with other coding methods such as vector quanti-
zation and sparse coding, FV coding can easily obtain high-
dimensional feature codes starting from a small codebook
size, which has been shown to provide considerable perfor-
mance improvements when utilizing linear classifiers.

Following best practices reported in the literature [7], we
process the descriptors independently. For each of them,
we first reduce the dimensionality by performing PCA with
a ratio of 0.5. We then randomly sample 0.3 million fea-
tures to learn a codebook of Gaussian Mixture Models (G-
MM) for each descriptor. We apply the Fisher Vector high-
dimensional encoding scheme to each descriptor and the re-
sulting super vectors are normalized by intra power nor-
malization [35]. The normalization strategy is carried out
in a block-by-block manner and each block represents the
vector related to one codeword. We use pk to denote a
vector related to k-th Gaussian and ‖.‖ stands for �2-norm.
The normalization could be represented as pk/

∥∥pk
∥∥ , where

k ∈ [1,K]. Finally the normalized super vectors are con-
catenated to represent the motion information for a given
video clip.

Static Deep Features: We leverage an existing deep
learning framework as a feature extractor for video frames.
Each video clip is uniformly sampled at a rate of two frames
per second, and deep learning features are extracted from
each frame. In order to produce a whole video clip lev-
el feature representation, we adopt a simple max pooling
scheme on the individual frame descriptors over the duration
of each video. We utilize the open source CAFFE [2] imple-
mentation, which is based on the deep convolutional neural
network architecture by Krizhevsky et al. [4]. Since the
frames in the action videos we investigate are independent
from the ImageNet dataset on which the CAFFE architec-
ture was trained, we are basically using the ImageNet model
trained for previous ILSVRC image classification tasks [9] as
an analog to using the prior knowledge a human obtained
from previous visual experiences to learn new tasks more
efficiently (in our case, action recognition).

The activations of the neurons in the intermediate hidden
layers could be used as strong features for a variety of video
recognition tasks because they contain much richer and more
complex representations than any earlier convolutional lay-
er in the network. In this work, we leverage as deep feature
the output of the intermediate layer named with fc6 in the
CAFFE implementation. We set the network input to the
raw RGB values of the frames, resized to 256*256 pixels,
and the values are forward propagated through 5 convolu-
tional layers (i.e., pooling and ReLU non-linearities) and
3 fully-connected layers (i.e., to determine its final neuron
activities). We obtain the 4096-dimension vector from the
intermediate fc6 hidden layer.
The deep feature produced by this architecture has a large

variation in its value distribution (i.e., [-72.8,24.8]), which
is potentially problematic due to sensibility to outliers in
one of its dimensions. This problem could be severe if we
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consider the fact that the negative values are produced by
suppressed neurons, and convey less useful cues compared
with the positive ones. To address this problem, and thus
produce more uniformly distributed values, we normalize
each dimension using the following function:

f(x) = sign(x)|x|α (1)

where sign(·) denotes the signum function and α ∈ [0, 1] is
the exponent parameter. Here we empirically set α as 0.5.
Finally, the feature vector is �2-normalized.

In the field of action recognition, the effectiveness of deep
features has not been yet extensively studied, especially in
a complementary way with dynamic trajectory features and
higher level semantics. In this work, we make initial at-
tempts on this issue, and provide feasible ways of integrating
static deep features into the classification pipeline.

High Level Semantic Concepts Features: In order
to richly represent the visual semantic concept space, we
employ two diverse sets of static semantic classifiers which
were trained on different datasets using different learning
techniques.

• CAFFE1K : the set of 1,000 classifiers originating from
the output of the last layer of the Deep convolutional
network described in the previous Section. Each of
those outputs carries one specific semantic information
associated with a visual concept from the ImageNet
taxonomy.

• ConceptsWeb : a set of 1,418 models trained from a
set of half a million images downloaded from the we-
b and manually annotated and organized in a hierar-
chical faceted taxonomy [1]. This taxonomy includes
concepts related to “objects”,“scenes”, “people”, “activ-
ities” and “events”. Each model SCi is an ensemble of
SVMs with linearly approximated χ2 kernel, learned
on top of bags of examples randomly sampled from
the set of thousands of manually labeled web images.
Each individual SVM uses one of 13 different glob-
al visual descriptors including color histogram, color
correlogram, color moment, wavelet texture, edge his-
togram, etc., extracted at multiple different regions of
the image, in a similar fashion to the spatial pyramid
framework.

The score for a Semantic Concept i on in a new image
x is then

SCi(x) =

Ni∑

k=1

wkbk(x) (2)

SCi(x) is the weighted sum of the scores on x of the
individual SVMs, which we define base models bk in
the ensemble. The weights wk are learned via cross-
validation during training.

For each video frame x, we concatenate all the models
scores into a N-dimensional Semantic Model Vector,
that is, a vector in which each dimension has a seman-
tic meaning

SMV (x) = [SC1(x), ..., SCi(x), ..., SCN (x)] (3)

We then use this concatenated vector as a regular fea-
ture for action modeling.

Dynamic 

Trajectory

Features

Static

Semantic

Deep

Features

Feature

Concate-

nation

Model

Learning

Average

Pooling

Score

Concate-

nation

(a) Early Fusion (b) Late Fusion

(c) Discriminative Model Fusion

Model

Learning

Model

Learning

Model

Learning

Model

Learning

Model

Learning
first layer

second layer

Dynamic 

Trajectory

Features

Static

Semantic

Deep

Features

Dynamic 

Trajectory

Features

Static

Semantic

Deep

Features

Figure 3: Illustration of heterogeneous feature fu-
sion strategies.

In our experiments we built one separate vector for each
of the two sets of classifiers.

3.2 Heterogeneous Information Fusion Strate-
gies

Given the intuitive complementary nature of the differ-
ent levels of semantic information we extract, it is natu-
ral to combine them into an integrated prediction system.
There are many possible methods for combining heteroge-
neous information. As presented in Figure 3 we explored
two standard ones (early fusion and average score based late
fusion) and a discriminative one inspired by stacked SVMs
approaches.

Early Fusion (EF): Early fusion strategy concatenates
all the features into a single vector representation. The con-
catenated heterogeneous features are then directly fed into
the multiclass SVM to train model for action categories.

Late Fusion (LF): In contrast to early fusion, where
features are then combined into a universal representation,
approaches for late fusion train models directly from each
individual feature. The prediction scores from each model
are then normalized to a common range and linearly com-
bined in a late fusion step. In our experiments, we adopted
the arithmetical mean as late fusion strategy.

Discriminative Model Fusion (DMF): we investigat-
ed the fusion performance following a two-layer model-learning
strategy, instead of the one-layer model adopted in standard
early and late fusion. In the first layer, as in the previous
late fusion approach, models are trained individually on top
of each descriptor. The predictions from the different mod-
els are then concatenated into a vector that is passed as
input to the second layer, where an SVM with RBF kernel
is learned on top of it. We did not tune any SVM parameter.

Discussion: Complementary information among heteroge-
nous features mentioned above may be of vital importance.
Video-level feature description could be largely complemen-
tary to low-level dynamic visual features. For example, al-
though two low-level features (HOF) quantized to the same
fisher vector representation, videos may convey different se-
mantics and false match could occur frequently (see Figure 2
for an illustration). Notwithstanding a significant difference
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in visual appearance, the FV representation in the “Play-
ingPiano” clip closely resembles that of actions in “Play-
ingFlute”.

4. EXPERIMENTS
In this section, we first describe our implementation de-

tails used in the experiments. Then we present recognition
results on two popular datasets to examine the performance
of the proposed approach. A comparison to the state-of-the-
art methods is given at the end of this section.

4.1 Experimental Setting
We conduct experiments on two popular action dataset-

s, namely HMDB51 [13] and UCF101 [12]. We summarize
them and the experimental protocols as follows. The H-
MDB51 dataset consists 51 actions with 6,766 manually an-
notated clips which are extracted from a variety of sources
ranging from digitized movies to Youtube. We follow the
experimental settings in [13] and report the mean average
accuracy over all classes. The UCF101 dataset [12] has been
the largest action recognition dataset so far, and exhibits the
highest diversity in terms of actions, with the presence of
large variations in camera motion, object appearance and
pose, object scale, viewpoint, cluttered background, illu-
mination conditions and so on. It contains 13,320 videos
collected from YouTube and includes total number of 101
action classes. We perform evaluation on three train/test s-
plits1 and report the mean average accuracy over all classes.
Dense trajectories were extracted using the code provided

by Wang et al.[11].
The extraction of deep features and CAFFE1K are con-

ducted on a single Nvidia Telas K10 GPU with python in-
terface, which speeds up by about 10 times than a decent
Intel CPU with 8 cores.

The ConceptsWeb semantics were extracted using a CPU
cluster running the LibSVM library 2.

In our experiments, we choose linear SVM as our classifier
with the implementation of LIBLINEAR [5]. Then for multi-
class classification, we use one-vs-all approach to perform
action recognition and select the class with the highest score.

4.2 Results and Discussion
4.2.1 Comparison with feature fusion
We compute the performance of the different components

of our system . To combine the representative capabilities,
we investigate the performance of the fusion of dynamic tra-
jectory features, static deep features as well as global tax-
onomy features. The combined features are used to train
SVM model for each concept. There are three different fu-
sion strategies–early fusion, late fusion and discriminative
model fusion.

From Table 1 and Table 2, we could see that combining
multiple types of dynamic trajectory descriptors can signifi-
cantly improve recognition performance. Comparing across
the alternative approaches, early fusion tends to generate
better results with clear gains than late fusion. The rea-
sons are two-folds. First, this should be partially ascribed
to high-dimensional representations in early fusion we used.
Second, the strategy of late fusion result in the heterogeneity
among the confidence scores provided by different models.

1http://crcv.ucf.edu/ICCV13-Action-Workshop/
2http://www.csie.ntu.edu.tw/ cjlin/libsvm

Such heterogeneity results from the variation of the discrim-
inative capability of each model in a certain feature space,
producing incomparable confidence scores at different nu-
meric scales.

We also compare the performance of CAFFE features
of the two fully-connected layers (fc6 and fc7), denoted as
CAFFE-1K and CAFFE-4K. We observe from Table 2 that
features from the six-layer are superior to those from the
seventh layer. We speculate that the fully connected layer
exert some negative effect on the features. Specifically, fea-
tures extracted using “fc6” (CAFFE-4K) obtains an mAP of
65.88% on UCF101 and 37.63% on HMDB51 dataset.

Then we augment the sematic features to the motion fea-
tures. By including the static deep features, we can clear-
ly see that for all methods, i.e., “Dynamic + CAFFE4K”,
“Dynamic + CAFFE1K”, the performance boost of feature
fusion in both HMDB51 and UCF101 database is consistent
and obvious, as compared and illustrated in Table 2. These
results strongly prove that the contextual cues of static deep
features are perfectly complementary to the low-level tra-
jectory features. Besides, an intuitive analysis could also
be easily provided. For instance, the action of “Basketbal-
l Dunk”, we can know which object is contained (semantic
static feature) and how is the object being played (motion
feature). Notice that there are 37 classes out of 101 cate-
gories which are recognized with 100% accuracy. The full
list UCF101 classes is reported in Table 4, where the cate-
gories for which we achieve perfect classification highlighted
in blue.

Moreover, we also found that semantic ConceptsWeb fea-
tures have less positive impact than static deep features
on both evaluation datasets. For instance, on the UCF101
dataset, it yields 86.10% and 89.00% in mean average ac-
curacy for ConceptsWeb and CAFFE1K features, respec-
tively. It demonstrates that static deep features is more
powerful in mitigating the semantic gap in comparison with
intermediate-level semantic representation.

In Figure 4 we visualize the semantic meanings provided
explicitly by the high level semantics features. For six ac-
tions, we sorted the weighs of the linear SVM trained on
top of the CAFFE1K descriptor and picked the top three.
Since each dimension (which is associated to a weight) in
the CAFFE1K feature corresponds to one of the 1000 Im-
ageNet categories, in this way we could extract the top 3
most discriminative concepts for each action. We then re-
port the four keyframes from the entire dataset for which
the concepts classifiers scored the highest. In this way we
can qualitatively evaluate at the same time the correlation
between action classes static concepts, and the quality of the
indivisual concepts on the given dataset (which is not guar-
anteed since they were trained on different data). We can see
that the most discriminative concepts for each action tend
to make sense. For example “Biking” is mostly distinguished
by bicycle, mountain bike and moped. It is interesting to no-
tice that even in the cases in which the semantic meaning of
a distinguishing concept does not appear to be correct (for
example abacus for “Typing”), the classifier is actually rec-
ognizing useful information which is correlated to the action
class (one or two hands on a device).

4.2.2 Comparison with the state of the art
We also compare our results with state-of-the-art methods

on each dataset. Table 3 displays our best results and several
recently published results in the literature. These method-
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Dynamic Trajectory Features Static Deep Features High Level Semantics
Methods HOF HOG MBHx MBHy CAFFE-4K CAFFE-1K ConceptsWeb

UCF101 78.37% 73.65% 75.93% 77.91% 63.83% 65.88% 57.10%
HMDB51 49.19% 42.37% 41.11% 48.28% 37.63% 33.05% 25.23%

Table 1: Classification Performance comparison of individual descriptors: low-level dynamic dense trajectory
features, intermediate-level static deep features and high-level semantic features.

UCF101 HMDB51
Approaches EF LF DMF EF LF DMF

HOF + HOG + MBHx + MBHy 87.37% 86.00% 88.00% 59.24% 58.06% 59.26%
CAFFE4K + CAFFE1K + ConceptsWeb 69.27% 68.27% 70.58% 40.24% 39.56% 41.27%

HOF + HOG + MBHx + MBHy + CAFFE4K 89.22% 88.48% 89.52% 62.68% 61.74% 62.81%
HOF + HOG + MBHx + MBHy + CAFFE1K 89.00% 88.80% 89.32% 61.00% 60.23% 61.74%

HOF + HOG + MBHx + MBHy + ConceptsWeb 86.10% 85.80% 86.20% 59.20% 58.23% 60.56%
HOF + HOG + MBHx + MBHy + Static 89.57% 89.53% 89.59% 62.71% 62.31% 62.88%

Table 2: Performance comparison of multiple fusion strategies with heterogeneous features.

s (e.g., mid-level parts [14]and deep architecture [10]) that
utilize the responses of discriminative action parts combined
with low-level features perform inferior to our approach with
a certain margin consistently. For UCF-101 dataset, we
achieve the best average accuracy 89.59%, which exceeds all
the recent results reported in [3, 7, 8]. All these works are
based on either low level trajectory features or ConvNets ap-
proach regardless of contextual semantic information. Note
that extracting features in [3, 8] using neural networks needs
more layers of neurons that incur significant number of addi-
tional parameters to be tuned, requiring much more training
data and several weeks to train. While in many video clas-
sification tasks, the amount of available training data is far
less from sufficient for training a neural network with too
many layers. Moreover, since these adopted datasets are
very challenging and have been widely used, it is interesting
and competitive to obtain an absolute performance gain of
1.6% in comparison with [8].

For HMDB51 dataset, our result (62.88%) also outper-
forms the state-of-the-art approaches [7, 8]. To further prove
the effectiveness of our approach on action recognition, we
present the confusion matrix for HMDB51 dataset in Fig-
ure 5. By comparison, we observe that static deep features
provide explicit enhancement to the low-level trajectory fea-
tures. For instance, it could be easily found that the per-
formance improvement on action of “kickball” is benefited
from semantic description on objects such as “soccer”, “soc-
cer ball”.
4.2.3 Comparison with low-level and intermediate-

level features
We provide further a detail of the classification perfor-

mance of state of the art static features (SIFT encoded with
Fisher Vectors) and mid-level semantics such as Classemes
and its derivatives PiCodes and MetaClasses.

The static information of Deep features and Semantics
achieved good recognition performances and provided com-
plementary information with respect to Dynamic descrip-
tors. Therefore we analyzed alternative static descriptors,
both low-level (i.e., SIFT [29]) and intermediate-level (i.e.
semantic attributes [28]) on the UCF-101 dataset.

For low-level visual features, we extract SIFT and lever-
age the GMM model followed by Fisher Vector over the fea-
tures extracted from all the frames in a video produce the
whole clip-level representation. Specifically, we first dense-
ly extract local SIFT descriptors with a spatial stride of 4

Feature Max Average Min

Classemes 53.16% 49.62% -
Picodes 33.97% 52.39% 33.97%
Meta-Classes [28] 61.55% 45.76% -

SIFT [29]+FV 25.24%

Table 5: Performance comparison of multiple pool-
ing strategies with intermediate-level semantic fea-
tures. State of the art static descriptors (SIFT
with Fisher Vectors encoding) provide a significantly
worse performance.

pixels at 9 scales and the width of SIFT spatial bins is fixed
as 8 pixels, which are the default settings in the VLFeat
toolbox [30]. We learn a GMM dictionary sampled from a
subset of 0.3 million SIFT descriptors. All descriptors are
whitened after PCA processing to 64-dimension with a ratio
of 0.5. We then conduct FV encoding and apply intra power
normalization to the resulting super vectors. This state of
the art static low-level feature obtains an average classifica-
tion accuracy of 25.24% on the UCF-101 dataset, which as
expected is significantly inferior to the performance of the
dynamic low-level descriptors (Dense Trajectories). More
interestingly, SIFT with FV encoding achieve recognition
rates significantly lower than other static descriptors both
at mid and high semantic levels.

Additionally, we compared the experimental performance
of popular intermediate-level features (akin to semantic at-
tributes) which were recently introduced by Bergamo et
al. [28]: Classemes and its derivatives Picodes and Meta-
Classes. Since each of those descriptors are extracted from
individual frames, we tested several basic pooling approach-
es (Max, Average, Min) in order to produce a video-level fea-
ture representation which aggregates the frames responses.
As reported in Table 5, we observe that such intermediate-
level features achieved less competitive performance (best
average accuracy of 61.55% over all feature types and aggre-
gation strategies) than their Deep counterparts at the same
semantic level (Deep features, 63.83%).

5. CONCLUSION
We proposed a novel unified framework that jointly com-

bines dynamic trajectory features and exploits the class re-
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Methods Ours [17] [8] [11] [3] [12] [7] [18] [10] [14] [19] [32] [21]

UCF101 89.6% 84.2% 88.0% 85.9% 65.4% 43.9% 87.9% 83.5% 87.7% - 73.1% - -
HMDB51 62.9% 56.3% 59.4% 57.2% - - 61.1% 55.9% 59.8% 37.2% 49.9% 48.7% 66.8%

Table 3: Performance comparison with state-of-the-art methods.

YoYo Archery JumpRope Basketball HeadMassage FrisbeeCatch ApplyLipstick BoxingSpeedBag BoxingPunchingBag
Punch Bowling Kayaking BenchPress HorseRiding JavelinThrow BaseballPitch CricketBowling TrampolineJumping
Swing Fencing Knitting FrontCrawl JumpingJack MoppingFloor BrushingTeeth MilitaryParade VolleyballSpiking
Biking Haircut LongJump IceDancing PlayingDhol ParallelBars JugglingBalls SoccerJuggling FieldHockeyPenalty
Diving PullUps Billiards PlayingDaf PommelHorse PizzaTossing PlayingGuitar WalkingWithDog RockClimbingIndoor
Lunges PushUps GolfSwing StillRings TennisSwing PlayingCello PlayingViolin WritingOnBoard
Mixing Rafting Hammering UnevenBars ThrowDiscus PlayingFlute SkateBoarding FloorGymnastics
Rowing Shotput HorseRace BalanceBeam WallPushups PlayingPiano SoccerPenalty TableTennisShot
Skiing Surfing Nunchucks BlowDryHair BabyCrawling PlayingSitar SumoWrestling BodyWeightSquats
Skijet Drumming PoleVault CliffDiving BandMarching PlayingTabla ApplyEyeMakeup CuttingInKitchen
TaiChi HighJump SalsaSpin CricketShot BreastStroke RopeClimbing BasketballDunk HandstandPushups
Typing HulaHoop SkyDiving HammerThrow CleanAndJerk ShavingBeard BlowingCandles HandstandWalking

Table 4: Illustration of 37 categories (in Blue) which obtained 100% accuracy in UCF101 dataset.

lationship via static deep features and high-level semantic
descriptors for improving action classification performance.
This unique capacity distinguishes the proposed method from
most of the existing works that often adopted low-level dense
features without considering the inter-class semantic corre-
lations. Our investigation also implies that static deep and
semantic features are largely complementary to low-level dy-
namic trajectory features. The SVM based fusion approach
provided the best framework to combine the information
coming from the heterogeneous static and dynamic features
at different semantic levels. Extensive empirical evaluations
proved the effectiveness of the proposed framework, which
achieves an accuracy of 89.59% and 62.88% on the well-
known UCF-101 and HMDB51 benchmarks, respectively,
which compare favorably with the state-of-the-arts.

We plan to explore multiple classification kernels with
heterogenous types of features. We also plan on learning
the temporal evolution of semantic descriptors representing
more complex activities.
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