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ABSTRACT
We propose a visual food recognition framework that inte-
grates the inherent semantic relationships among fine-grained
classes. Our method learns semantics-aware features by for-
mulating a multi-task loss function on top of a convolutional
neural network (CNN) architecture. It then refines the CNN
predictions using a random walk based smoothing proce-
dure, which further exploits the rich semantic information.

We evaluate our algorithm on a large “food-in-the-wild”
benchmark [3], as well as a challenging dataset of restaurant
food dishes with very few training images. The proposed
method achieves higher classification accuracy than a base-
line which directly fine-tunes a deep learning network on the
target dataset. Furthermore, we analyze the consistency of
the learned model with the inherent semantic relationships
among food categories. Results show that the proposed ap-
proach provides more semantically meaningful results than
the baseline method, even in cases of mispredictions.

Categories and Subject Descriptors H.3.3 [Information
Systems]Information Storage and Retrieval-Content Anal-
ysis and Indexing ; I.4 [Computing Methodologies]:Image
Processing and Computer Vision
General Terms Hierarchical Deep Learning
Keywords Food Recognition, Multi-task Learning

1. INTRODUCTION
Food recognition has recently attracted a lot of attention

in the multimedia and vision community, following the del-
uge of food pictures shared on the web and social media
(either generic1 or highly specific ones2). Meanwhile, with
the growing popularity of fitness applications, the need for
easy logging of calorie consumption on mobile devices has
become increasingly relevant. While some preliminary work

1www.instagram.com
2www.foodspotting.com, www.yummly.com
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Cheesecake 
CNN-FT: Croque Madame 
CNN-HL-LI: Strawberry Shortcake 
Ravioli 
CNN-FT: Apple Pie 
CNN-HL-LI: Dumplings 

Sushi 
CNN-FT: Chicken Wings 
CNN-HL-LI: Sashimi 

Figure 1: Examples of misclassified food items us-
ing CNN-FT and the proposed CNN-HL-LI. Ground
truth labels are in green. While both methods mis-
classify the images, the predictions from CNN-HL-
LI are semantically closer to the ground truth.

has been proposed to address the problem of nutrition as-
sessment from images [10, 12], a full solution has yet to be
achieved. We focus on developing a food recognition engine
which can be used as a fundamental building block towards
such applications for automatic nutrition intake tracking.

A range of different approaches have been proposed to ad-
dress food recognition as an instance of a fine-grained classi-
fication problem [22], from random forests [3] to structured
SVMs on top of extreme learning machines [13], from di-
rectly training or fine-tuning deep convolutional neural nets
from food images [6, 9, 19] to using image captioning tech-
niques [8]. When the geolocation information of a food pic-
ture is available, the scope of the problem is reduced from
the recognition of food “in the wild” to matching items on a
restaurant menu to enhance the recognition performance[1,
2, 17]. However, treating food recognition as a flat fine-
grained classification problem disregards the rich semantic
relationships among food classes. As shown in the examples
in Figure 1, even when a food recognition engine fails to iden-
tify the exact class, it is preferable for a user if the system
provides results consistent with the ground truth at a coarser
category level. Based on this observation, we propose a deep
CNN based food recognition framework that is aware of the
semantic structured relationships among classes.

Multi-task learning has been extensively employed to op-
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Joint Feature Learning

Input Image

High-level features

L(w)

(a) Each semantic level has one separate fully connected layer.

Egg Dish 
0.2

Pudding or Custard 
0.8

Fried Egg 
0.0

Omelette 
0.5

Custard 
0.5

0.60.4

0.70.3

(b) The refined labels are in blue.

Figure 2: The proposed approach consists of (a) joint feature learning, where the semantic label hierarchy is
embedded in the loss function, and (b) label refinement by explicitly utilizing relationships among classes.

timize for problems with a structured output, including as
in our case a hierarchical one [5, 7]. However, such an ap-
proach is relatively new within the context of deep convo-
lutional networks [20]. In terms of encoding label struc-
tures with CNNs, the proposed approach is similar to some
existing techniques. Label structures within CNNs have
been modeled as dedicated fully connected layers feeding
each other (from coarse to fine) [18], and graphs linking
fine-grained classes to auxiliary categories encompassing la-
bel or attribute relations [4, 16, 22]. Instead of class rela-
tionships, Zhang et al. [21] learn feature representations by
jointly optimizing the fine-grained classification and hier-
archical similarity constraints. However, most of those pro-
posed approaches, while“deep”in network architecture, tend
to be “shallow” in semantic hierarchy (they mostly handle a
two-level hierarchy). Moreover, such approaches explicitly
model semantic links between each pair of coarse and fine
classes (for example, using triplet loss [21] or hierarchical
weight regularization [16, 22]), which requires an extremely
large amount of training examples and increases optimiza-
tion complexity. Our proposed architecture, on the other
hand, can easily generalize to an arbitrary number of lev-
els in the hierarchical tree without demanding a substantial
increase in the number of training examples. The main con-
tributions of this work include:

• A flexible multi-task loss function that jointly learns
CNN features across different semantic levels, which
can be easily integrated with different CNN designs.

• A random walk based label refinement strategy that
takes advantage of the semantic structure to improve
consistent predictions at each semantic level.

2. PROPOSED METHOD
As shown in Figure 2, the proposed approach consists of

two components, both utilizing the hierarchical semantic re-
lationships among classes: a semantics-aware joint feature
learning step based on multi-task learning, and a random
walk based label refinement step.

2.1 Semantics-aware Joint Feature Learning
Given N training images, {xi, yi}Ni=1, where xi is the vec-

torized pixel values of an image, and yi ∈ Y is the cor-
responding image label, the classical softmax loss function
used in CNN is formulated as:

L(w) =

N∑
i=1

−log p(yi|xi,w) (1)

where w is a vector composed of the network parameters,
and p(yi|xi,w) is the output at the yi-th node in the output
layer. While the above formulation applies to general fine-
grained classification, it does not explicitly model structures
such as semantic relationships among classes.

Suppose we are provided with a semantic structure, T =
{Y(t)}Tt=0, where Y(t) = {0, 1, · · · , c(t)} is the set of c(t)

labels at the t-th level of the semantic hierarchy. Y(T ) is
the root node, which represents a generic concept of “food”.
The leaf nodes, Y(0) ≡ Y, correspond to the original input
classes. By leveraging the semantic structure, T , our goal is
to learn high-level CNN features which can improve on fine-
grained classification. Specifically, we propose the following
multi-task learning based loss function:

L(w) =

N∑
i=1

−log p(y
(0)
i |xi,w0,w

(0))

+ λ ·
T−1∑
t=1

N∑
i=1

−log p(y
(t)
i |xi,w0,w

(t))

(2)

where y
(t)
i ∈ Y(t) is the corresponding class label of image

i at the t-th semantic level, w = [w0,w
(1), · · · ,w(T )], w0

represents the network parameters from the input layer to
the high-level feature level, and w(t) corresponds to the pa-
rameters of the fully-connected layer that maps from the
high-level features to the output layer at the t-th level of
the semantic tree. λ controls the trade-off between the con-
tribution of the fine-grained classification from the leaf level,
and the semantic relationships among super categories.

Given a semantic tree (Figure 3 shows the hierarchy used
in this work), Equation 2 jointly optimizes the softmax out-
put at each level of the hierarchy. As illustrated in Fig-
ure 2(a), the feature learning module is shared by different
softmax output layers, each modeling a different level in the
hierarchical tree. The joint feature learning design serves
two purposes: (1) it ensures that high-level CNN features
for fine-grained classification are also discriminant for super
categories, and (2) it helps the model to produce more se-
mantically coherent predictions. In fact, even in cases of
misclassification, its predictions tend to fall within semanti-
cally related categories (see the examples in Figure 1).

During the learning process, the weights w0 of the shared
feature layers were initialized using the values of a network
pre-trained on ImageNet, while we initialize the fully con-
nected layers using the uniform distribution. For each fully
connected layer, the weight update is only related to its cor-
responding softmax term; for the previous layers, the gra-
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Figure 3: The food semantic hierarchy.

dient can be computed as the weighted sum of the gradient
related to each loss term in Equation 2. We optimize Equa-
tion 2 using standard stochastic gradient descent.

2.2 Label Inference in the Semantic Tree
Let p = [h(0)ᵀ,h(1)ᵀ, · · · ,h(T−1)ᵀ]ᵀ be the probability

outputs at each semantic level of the learned CNN, we pro-
pose to further incorporate the semantic relationships by
inferencing the probability values on the semantic tree. We
formulate the label inference problem as a random walk pro-
cess: the initial probability scores are considered as initial
values on each node. Each node takes random transitions to
its parent or child in the semantic graph at each step until
the node values converge. The goal is to incorporate the
recognition results from super categories as well as from the
leaf nodes, so that in difficult recognition cases, information
at different semantic levels are considered simultaneously.

The process is exemplified in Figure 2 (b). The initial
CNN predictions (values inside each box) might still present
some errors/confusion (both Omelette and Custard have a
0.5 score). The random walk process enforces consistency
by smoothing the prediction values over classes on the same
semantic path. It thus drives the score of Custard (the cor-
rect prediction, in green) to a larger value of 0.6, thanks to
the large initial prediction of its parent Pudding or Custard.

Let An×n be the adjacency matrix defined over all the
tree nodes, V = {Y(0),Y(1), · · · ,Y(T )}, and |V| =

∑T
t=0 c

(t)

is the total number of tree nodes. Ai,j = 1 when i-th node in
V is the parent or a child of the j-th node; otherwise Ai,j =
0. Given the adjacency matrix, we construct a transitional
probability matrix T by normalizing each column of A to
have unit L1 norm. At the k-th step of the random walk
process, the current node values are determined by both the
initial input values, p0 (normalized to have unit L1 norm),
and the previous values on each node:

p(k) = α · p(0) + (1− α) ·Tᵀp(k−1) (3)

where α is a trade-off parameter between preserving input
node values and semantic based label inference. Using the

Dataset Classes Images per class

Food-101 101 1000

5-Chain

Applebee’s 50 8
Dennys 56 6

Olive Garden 55 8
Panera Bread 79 28
TGI Fridays 54 8

Table 1: Distribution of the experimental datasets.

constraint of unit L1 norm of p(k), Equation 3 becomes

p(k) = α · p(0)1ᵀp(k−1) + (1− α) ·Tᵀp(k−1)

= T′
ᵀ
p(k−1)

(4)

where T′
ᵀ

= α ·p(0)1ᵀ + (1−α) ·Tᵀ. The final node values

are taken as the stationary value of p(k) as k →∞. It is
readily seen that the stationary node values are proportional
to the eigenvector (corresponding to the largest eigenvalue)
of T′. To calculate the stationary node values, p∗ , we used
the Power Method [11] by continually multiplying T′ to the
node values until convergence. In each iteration, we apply
L1 normalization to p(k). The final prediction for an input
image is obtained by taking the label with the largest value
on the sub-vector in p∗ corresponding to the leaf nodes.

3. EXPERIMENTS

3.1 Datasets and Experiment Setup
To thoroughly evaluate the proposed approach, we chose

two types of datasets with different properties: (1) Food-
101 [3]: a benchmark food dataset commonly used to eval-
uate food classification accuracy [12]; (2) 5-Chain: contain-
ing menu items from five popular restaurant chains among
the top causal dining in the US. The images were collected
from multiple web sources, such as search engines (Bing,
Google) and social networks (Flickr, Foodspotting, Yelp),
and manually labeled. As shown in Table 1, categories in
the 5-Chain dataset contain very few images compared to
Food-101, since they are very specific. On the other hand,
Food-101 contains generic food classes with various composi-
tion styles, whereas 5-Chain food items have more standard
food composition and less intra-class variance (Figure 4).

For Food-101, we trained a 101-way classifier; in 5-Chain,
we trained a separate classifier for each restaurant indepen-
dently. We constructed a generic food taxonomy (shown in
Figure 3), and for each classification task, we only take into
account the subset of the taxonomy that covers the corre-
sponding food classes. For all the experiments, we randomly
selected 75% of the images for training and the rest for test-
ing. We adopted GoogLeNet [14] as the base network for the
proposed hierarchical food recognition approach. Note that
our framework is independent of the base deep architecture
on top of which it is applied, and could be combined with
any common CNN model.

We compared against a baseline model consisting of a pre-
trained GoogLeNet fine-tuned on each dataset (CNN-FT).
This configuration has been proven to produce state of the
art performance on the Food 101 dataset [12]3. We denote

3Note that while we used the same network configuration as
[12], the performance we present in Table 2 for Food 101 does
not replicate what was reported in their paper. This might
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Dataset
CNN-FT CNN-HL CNN-HL-LI

Accuracy LCA Accuracy LCA Accuracy LCA

Food-101 69.64 0.80 72.09 0.72 72.11 0.72

5-Chain

Applebee’s 72.55 0.93 74.18 0.85 73.91 0.86
Dennys 57.74 1.31 59.68 1.27 60.00 1.26

Olive Garden 78.10 0.77 79.52 0.72 80.95 0.66
Panera Bread 91.03 0.27 90.98 0.26 91.19 0.25
TGI Fridays 73.48 0.82 77.27 0.68 77.78 0.66

Table 2: Food recognition results from all methods across different food datasets.

(a) Hummus from Food-101

(b) TGI Fridays All American Stacked Burger

Figure 4: Example images of the datasets used.

the CNN learned using the proposed multi-task hierarchi-
cal loss function as CNN-HL, and CNN-HL-LI with the
addition of the label inference step.

We implemented the algorithm using the Lasagne library
and the experiments were performed on a cluster with ∼20
Nvidia K40 GPUs. In all experiments, we fixed λ = 1,
α = 0.2, which were obtained using the best cross valida-
tion performance on Food-101. The random walk process is
considered to reach convergence when the L1 norm of the
node values changes by less than .001. In our experiments
convergence is typically achieved within 10 iterations.

3.2 Results and Discussion
Fine-grained Food Recognition Table 2 summarizes

the top-1 classification accuracy of the three methods on
Food-101 and 5-Chain datasets. Except on the Panera Bread
experiment, CNN-FT produced lower classification perfor-
mance than CNN-HL, which demonstrates that the pro-
posed joint feature learning strategy improves upon learning
with only softmax loss at the leaf semantic layer. Further-
more, the result from CNN-HL-LI ranks the highest except
on Applebee’s. This observation indicates the effectiveness
of the explicit usage of the semantics in label refinement.

Hierarchical Learning Results In addition to directly
evaluating the proposed approach on fine-grained food recog-
nition, we are also interested in the consistency of the recog-
nition result with the provided semantic structure. We visu-
alize the learned features by taking the output of the high-
level features layer of the learned CNN and projecting them
to a 2D space using T-SNE [15]. Figure 5 shows that the
two super categories (Sweet Treat, and Seafood or Shellfish)
are better separated with the learned CNN using the pro-
posed multi-task loss function. This demonstrates that the

be due to differences in the implementations and parameter
choices, which were not released by the authors.
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Figure 5: 2D embedding of the learned features in
the proposed approach using T-SNE ([15]).

joint feature learning process enables learning features that
can discriminate classes at different levels of the hierarchy.
Such property is especially useful for a nutrition information
estimation application, since in a misclassification scenario,
a semantically close prediction provides more relevant nutri-
tion estimation than an entirely unrelated prediction.

To quantitatively evaluate whether the learned model is
consistent with the semantics, we measured the semantic
distance between the ground truth label and the predicted
label using the height of Lowest Common Ancestor (LCA),
where 0 indicates a correct match, and 2 means the two
nodes share a common grandparent. We calculate the mean
LCA on each dataset (shown in Table 2). The results are in
line with the fine-grained classification ones, where CNN-
FT achieves the lowest performance and CNN-HL-LI out-
performs CNN-HL on the majority of the tasks. Similar
observations can be made from the qualitative results shown
in Figure 1. Those results demonstrate that in misclassifica-
tion cases, CNN-HL-LI can still provide recognition results
that are semantically closer to the ground truth.

4. CONCLUSIONS
We presented a framework that leverages hierarchical se-

mantics for food recognition based on joint deep feature
learning and semantic label inference. Experimental results
show that the proposed framework not only improves upon
the accuracy of basic flat fine-grained classification meth-
ods, but also produces more semantically coherent predic-
tions. With the prevalence of fitness applications, such a
food recognition algorithm is a first step towards visual food
nutrition assessment. For future work, we plan to take ad-
vantage of the unified semantic hierarchy to transfer the
knowledge learned from large datasets to small-scale ones
that are challenging for fine-tuning CNNs.
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