IBM Multimedia Analytics
@ ImageCLEF2013

http://www.imageclef.org/2013/medical
Overview

- IBM Multimedia Multi-Lab group @ ImageCLEF 2013

- Modality Classification task
 - Approaches
 - Results

- Case-based retrieval task

- Compound Image Segmentation Task

- Conclusions
IBM Multi-Lab Group @ ImageCLEF 2013

- In 2013: multi-lab collaboration to solve the tasks
 - Australia and TJWatson on Modality Classification and Retrieval tasks
 - Haifa involved in Compound Figure Segmentation task
Overview

- IBM Multimedia Multi-Lab group @ ImageCLEF 2013

- Modality Classification task
 - Approaches
 - Results

- Case-based retrieval task

- Compound Image Segmentation Task

- Conclusions
In user-studies, clinicians have indicated that modality is one of the most important filters that they would employ for search.

TASK: given an image, determine to which out of 31 medical and non-medical modalities it belongs.

- 31 categories (x-ray, CT scan, ultrasound, etc.)
- Images obtained from 300K real Pubmed articles
- In 2013: 2,845 Training / 2,582 Test images
Modality Classification Task – General Approach

- Extract several descriptors (features)
 - Visual (for texture, color and edges, at multiple granularities)
 - Textual (from captions, articles)

- Selection of best features based on held out (validation) set performance

- Learn multi-class image classifier on fusion of selected descriptors/approaches

![Diagram showing the process of modality classification task]

Caption Text

Texture Descriptors

Color Descriptors

Fusion of best features/models

Modeling

“DXDR”
Modality Classification Task – Visual Descriptors

- **Global descriptors**
 - Color histogram
 - Color correlogram
 - Edge histogram
 - GIST
 - Curvelet Texture
 - Fourier Orientation
 - FourierPolarPyramid
 - Thumbnail Vector
 - Image Type, Stats

- **Local descriptors**
 - LBP histogram: 58 uniform + 1 non-uniform codes
 - SIFT: different interest point detectors, Bag-of-Words codebooks+ soft assignment
 - Color SIFT (RGB-SIFT, HSV-SIFT, C-SIFT)
Modality Classification Task – Semantic Model Vector

- Set of 121 medical semantic concept classifiers constructed from training data collected from various sources (IRMA, TCIA, JSRT, Web Crawl)

- Classifiers trained using the IMARS learning framework
 - cover a range of radiological modalities, body regions, views, and some instances of disease pathology

- Classifiers responses concatenated into a 121 dimensional vector for each image

Training Datasets

- IRMA
 - X-Ray, Various Regions
 - 15,000 images
 - 193 categories (Modality, Organ, View)

- TCIA
 - 1,000,000+ images (30+ GB)
 - 17+ Categories (Modality, Body Region, View, Disease)

- JRST
 - X-Ray, Chest
 - 247 images, 154 lung cancer, 93 normal

- Cornell Datasets
 - CT, Chest
 - 25,000 images (11 GB)

- Web Crawl
 - 7,600 images
 - 49 categories (Modality, Organ, View, Disease)

- Cardiac Atlas (TBA)
 - Over 3,000 cases over decades.
Modality Classification Task – Visual Descriptors

- Mean Accuracy measured on official Test Set
- Medical Semantic Model Vector is the Best individual descriptor
Modality Classification Task – Textual Analysis

Modality Tailored Keywords

- **Representation**
 - Over 400 text patterns (full words, fragments of words, or multi-word phrases)
 - Vocabulary terms hand selected by perusing roughly half of captions in the training set
 - Between 2 and 51 patterns selected for each modality, then combined into one big feature list
 - Related phrases such as *fluorescent, immunofluorescence, and Alexafuor* merged to variabilized patterns such as *fluor*
 - Asterisks at the front and/or back match an arbitrary number of characters up to the first token delimiter
 - Patterns with all capital letters were only matched to text that was fully capitalized

- **Modeling**
 - The text-based classier built on top of this representation generates a likelihood score for each modality based on the presence or absence of a number of key words.
 - The number of hits (or an absence of a hit) for each term is weighted by a pseudo-probablistic model derived from the known modalities of the training examples.
 - Conditional probability of seeing a term given a particular modality is divided by that term's background probability.
Fragments of term list

- Pattern syntax
 - Can have variable (*) front and/or back but not middle
 - All capital term must be all capitals in text to match

- Complete list
 - Not segregated by modality (all lumped together)
 - Over 400 terms (best if no repeats)
Modality Classification Task – Textual Analysis

Ontology Based Vocabulary

- **Representation**
 - Terms from two types of Ontologies
 - General lexical ontology (WordNet)
 - Medical specific domains medical knowledge-bases

- **Modeling**
 - NLP pipeline that consist of
 - WordNet lexical relations
 - Clinical Text Analysis and Knowledge Extraction System (cTAKES) and the Yale cTAKES
 - Word-sense disambiguation and sliding window based part-of-speech to identify
 - relationships among words in the medical context
 - types of clinical named entities such as drugs, diseases,…
 - Lucene indexing on Articles Titles, Abstracts and Image Captions, TF-IDF weight
 - Modality classification based on modality search
Modality Classification Task - Modeling and Fusion Strategies

- IMARS MODELING
- Two level SVM + Kernel Approximation
- Meta Classifiers
- Early (Kernel) and Late Fusion
Modality Classification Task – IMARS Modeling

- Train collection of Unit Models on various subsets of data, image granularities, and features
- Each Unit Model on its own is “weak” – highly under-sampled entity
- Collection of Unit Models can be “strong” – cover most of the data/feature space
- Forward model selection Fusion strategy to generate strong Ensemble Classifier

- 1 Vs All classifiers learned for each class
- Max pooling used for multiclass classification
Modality Classification Task – Two level SVM + Kernel Approximation

- Motivated by the success of “deep-learning”, we make traditional SVM one layer deeper
- Traditional nonlinear kernel evaluation is very expensive, so we use kernel approximation to speed up the process
- 100% training accuracy and 81.05% (12 features) and 81.23% (24 features) for validation accuracy

Over all model:

\[K(x_i, x_j) = \sum_m \alpha_m K_m(x_i, x_j) = \sum_m \alpha_m \phi(x_i)\phi(x_j) \]
Modality Classification Task – Meta Classifiers

- Meta-learning\(^1\) is a strategy to learn from learned knowledge
- Another level of supervised learning for combining the results of existing fusion models
- Collaboration model to combine the fusion models predictions
- **INPUT**: vector of different IMARS Ensemble models scores on top of visual and textual descriptions
- Learning algorithms tested:
 - Decision Tree
 - SVM (RBF Kernel, Poly kernel, Normalized Poly kernel and Puk kernel)
 - Random Forest
 - Logistic Model Tree (LMT)
 - Naive Bayesian

Modality Classification Task – Early/Kernel/Late Fusion

Early Fusion
- Feature Concatenation
- Kernel Matrix
- 1vs1 + majority voting
- Multiclass SVM Model
- Prediction
- “DXDR”

Kernel Fusion
- Aggregate Kernel Matrix
- Prediction
- “DXDR”

Late Fusion
- Predictions Pooling
- Final Prediction
- “DXDR”
Modality Classification – Official Results

IBM submission runs: **10 Runs**
- Top Textual
- Top Visual
- Top Mixed

Overall Best Performance for every submission type

Modality Tailored Keywords

<table>
<thead>
<tr>
<th>TYPE</th>
<th>NO EXTERNAL DATA</th>
<th>EXTERNAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textual</td>
<td>IBM_modality_run1</td>
<td>IBM_modality_run2</td>
</tr>
<tr>
<td>Visual</td>
<td>IBM_modality_run3</td>
<td>IBM_modality_run5</td>
</tr>
<tr>
<td>Visual</td>
<td>IBM_modality_run4</td>
<td>IBM_modality_run6</td>
</tr>
<tr>
<td>Mixed</td>
<td>IBM_modality_run7</td>
<td>IBM_modality_run9</td>
</tr>
<tr>
<td>Mixed</td>
<td>IBM_modality_run8</td>
<td>IBM_modality_run10</td>
</tr>
</tbody>
</table>

Late fusion of all visual features and classification strategies

Late Fusion of Run1 and Run4
Modality Classification - Results

2012

MIXED | TEXTUAL | VISUAL

Mean Accuracy

IBM | Non-IBM

Random Prediction

2013

MIXED | TEXTUAL | VISUAL

Mean Accuracy

IBM | Non-IBM

Random Prediction
Modality Classification - Results

- Textual
- Visual
- Mixed

DRCO – Combined Radiology modalities in one image

Confused with DRPE (PET)
Overview

- IBM Multimedia Multi-Lab group @ ImageCLEF 2013

- Modality Classification task
 - Approaches
 - Results

- Case-based retrieval task

- Compound Image Segmentation Task

- Conclusions
Case Based Retrieval

- 35 query cases
- Dataset: 300K Pubmed Articles
- GOAL: return list of 1000 most relevant articles, given a query

APPROACH

- Based on textual Ontology Based Vocabulary (one vocabulary from WordNet, one from UMLS)
- Topic modeling approach to identify meaningful patterns from the medical documents
- LDA to detect the probability distribution $P(w|z)$ over words given topic z
- Each medical document defined as a mixture of latent topics characterized by a multinomial distribution over words.
- Number of topics ranging from 100 to 10,000 topics. Gibbs sampling and Bayesian estimation to assign the multinomial distributions over a set of words to each latent topic
- Separated the topics that are defined for titles, abstracts and captions and grouped the medical documents that share the same topics
- Lucene index with TF-IDF

<table>
<thead>
<tr>
<th>Runid</th>
<th>Retrieval type</th>
<th>MAP</th>
<th>P10</th>
<th>P30</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNUMedinfo9</td>
<td>Textual</td>
<td>0.2429</td>
<td>0.2657</td>
<td>0.1981</td>
</tr>
<tr>
<td>IBM_run_1</td>
<td>Textual</td>
<td>0.1573</td>
<td>0.1571</td>
<td>0.1057</td>
</tr>
<tr>
<td>IBM_run_3</td>
<td>Textual</td>
<td>0.1573</td>
<td>0.1943</td>
<td>0.1276</td>
</tr>
<tr>
<td>IBM_run_2</td>
<td>Textual</td>
<td>0.1476</td>
<td>0.2086</td>
<td>0.1295</td>
</tr>
</tbody>
</table>
Overview

- IBM Multimedia Multi-Lab group @ ImageCLEF 2013

- Modality Classification task
 - Approaches
 - Results

- Case-based retrieval task

- Compound Image Segmentation Task

- Conclusions
Compound Image Segmentation Task

Combination of two approaches

- Analysis of connected components in a binarized image
 - Grayscale conversion
 - Binarization
 - Connected Components analysis
 - Geometric based filtering (size, proximity)

- Use of common notation of subfigures using text
 - OCR to recognize isolated components as letters (A, B, C)
 - Analysis of geometric layout of letters

Results

% of correctly separated images

<table>
<thead>
<tr>
<th>Submissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
</tr>
<tr>
<td>Non-IBM</td>
</tr>
</tbody>
</table>
Overview

- IBM Multimedia Multi-Lab group @ ImageCLEF 2013

- Modality Classification task
 - Approaches
 - Results

- Case-based retrieval task

- Compound Image Segmentation Task

- Conclusions
Conclusions

- **Semantic Model Vector** best single performing feature

- **Combination/fusion** of different visual and textual based representations, as well as learning frameworks

- Leverage combination of *different sources for textual* search/classification
 - Modality tailored extracted lexicon
 - General lexical ontology (WordNet) and
 - Medical specific domains medical knowledge-bases

- **Future directions**
 - Improve *combination* of complementary information from Visual and Textual domains
Thank you!

Questions?