You are what you tweet...pic! Gender prediction based on semantic analysis of social media images

Michele Merler, Liangliang Cao and John R. Smith

IBM T.J. Watson Research Center, USA

mimerler@us.ibm.com

Outline

- Motivation & Research Questions
- Proposed Approach
 - Visual and Textual Analytics
 - Fusion Strategies
 - Experimental Results
- Conclusions & Future Directions

Social Media is a Goldmine of for Multimedia Research

Event Discovery and Summarization

Attributes Discovery

Gender, age, location, education, political preferences, job, etc.

Training Data for Visual Classification Sentiment Analysis

Previous Work

- <u>Text-based Gender estimation from social media</u>, *language dependent, performance ceiling*
 - Tweets [Burger et al. EMNLP11] [Pennacchiotti et al. ICWSM11]
 - First name [Liu and Ruths AAAI13]
 - Hashtags [Totems14]
 - Psycho-linguistic features [System U] [Kokkos et al. FM14]
 - Topic modeling on boards [Chang et al. CSCW14]
- Non-text based Gender estimation from social media
 - Collaborative Filtering (who you are friends with, who you follow) [Ito et al. ASONAM13] [Ludu CORR14]
 limited performance
 - Profile Picture face analysis, not always available/reliable
 - Page Colors [Alowibdil et al. CASNAM13], limited performance, not always available
 - Whole Feed Images [Ma et al. IWCMASM14], small set of ad hoc classifiers, no use of profile pictures, extremely limited generalization power
- Combinations Gender estimation from social media
 - Text + Images [Sakaki et al. ICCL14] small preliminary study, over-simplicistic fusion method: $\alpha p(text) + (1 - \alpha)p(visual)$, limited performance
- Multimodal Fusion (not for gender prediction)
 - Extensive literature, early fusion, late fusion, general fusion strategies vs proposed specific filtered fusion (see experimental results)

A need remains for a system that derives user gender using an effective multimodal combination of visual and non-visual cues

Research Questions

Is there a correlation between gender and the content of the images that people post on social media?

yes

If so, can we *predict* a social media user's gender based on a semantic analysis of those images?

yes

Does the visual insight provide *complementary* information with respect to others (text)?
 yes

Summary of Invention –Extracted Information

Multimodal Cues

- Textual
 - Name
 - Description
 - Tweets (text)
- Visual
 - Profile picture
 - Header picture
 - Profile colors
 - Feed images/videos

Textual Analytics

- Profile Name
- Text from tweets

Visual Analytics

Profile Picture

Color

Analysis of Collection of Posted Images

What's in a Twitter Profile Picture?

What's in a Twitter Profile Picture?

the good (looking)

the bad

...and the weird?

Limitations of Profile Picture Face Analysis

Misleading Clothing

Occlusion

Interesting angles

celebrity swap

Multiple people

Non-human pictures

Limitations of Profile Picture Face Analysis

Source: <u>http://www.faceplusplus.com/demo-search/</u>

Race, glass, smiling

÷

URL

0

Profile Picture : proposed approach

- Face++ detector
- Concept Detectors for 25 categories
 - Adult, Animal, Baby, Beach, Boy, Brand Logo, Building, CGI, Car, Cat, Child, Dog, Elderly Man, Elderly Person, Elderly Woman, Female Adult, Girl, Horse, Human Portrait View, Human, Icon, Male Adult, Motorcycle, Nature, Two People
 - Train SVM on top of Semantic Model Vector of concept detectors

Linear Profile SVM weights by category

Images From the Entire Feed

- Same Semantic Model Vector Approach
 - SMV 51 (subset of IMARS Taxonomy)
 - SMV 717 (subset of IMARS Taxonomy)
 - SMV Deep (from Caffe, 1K ImageNet categories)
- Aggregation Strategies
 - Model on Images directly
 - Simple Prediction Scores Aggregations (avg, max)
 - Statistical Count scores (threshold + count)

Twitter Gender Dataset Examples

Male

Twitter Gender Dataset Examples

Female

Linear SVM weights by category (SMV 51)

Top 14 weighted categories by gender (SMV51)

Top 20 weighted categories by gender (Deep ImageNet)

Use Profile Page Color Info

Jalal S. Alowibdi, Ugo A. Buy and Philip Yu, Language Independent Gender Classification on Twitter, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

- Background color
- Text color
- Link color
- Sidebar Fill color
- Sidebar Border color

512 Quantized colors (RGB with 3 bits each)

71% Accuracy when using all 5

Figure 4. Spectrum of popular colors for female users (left-hand side) and male users (right-hand side).

http://www.twitteraccountsdetails.com/

Visit Full Profile Tweet 0	User	Twitter ID	30208909
		Username	SachaNicole
		Full Name	So
		Description	wassup you fake ass hoe
		Location	*
		URL	Not provided by the user
		Tweets	56,407
		Followers	790
		Following	649
		Favorited	782 tweets
		Listed	in 4 lists
	Account	Age	5 years, 6 months and 18 days
		Language	en
		Is Verified?	No
		Is Protected?	No
		Time Zone	Quito
		UTC Offset	UTC-5h
		Geotagging	Enabled
		Is Translator?	No
		Contributors	Disabled
	Design	Default Profile Theme?	No
		Default Profile Image?	No
		Profile Image Link	https://pbs.twimg.com/profile_images/
		Header Image Link	https://pbs.twimg.com/profile_banners
		Image Background?	Yes
		Background Image Link	https://pbs.twimg.com/profile_backgro
		Tile Background Image	Disabled
		Background Color	#000000
		Text Color	#E600E6
		Link Color	#FAB812
		Sidebar Fill Color	#FFFFFF
		Sidebar Border Color	#FFFFFF

Data source: twitter.com/____SachaNicole

Use Profile Page Color Info

512 bins

729 bins

[[mu]]

Experimental Setup and Proposed Approach

- Public Annotated Dataset of 10K Twitter users¹
- 10 Training/Test random splits, each test split with 400 male and 400 female users

Proposed Approach : Fusion of 4 Multimodal Cues

- First Name (when available): associated with frequency in Male/Female populations²
- Text : standard bag of words from ~200 tweets, analyzed with LibShortText³ library
- Profile Picture: Semantic Model Vector (25 concepts) and gender inference from Face++

- Stream Pictures : Semantic Model Vector (51, 717, 1K) aggregated over user pictures
- Page colors
- Background and Header picture
- Gender modeling was conducted using SVM with RBF kernel, with kernel parameters estimated via grid search

3. http://www.csie.ntu.edu.tw/~cjlin/libshorttext/

http://www.networkdynamics.org/static/datasets/LiuRuthsMicrotext.zip From paper Liu and Ruths, What's in a Name? Using First Names as Features for Gender Inference in Twitter, AAAI 2013
 http://www.census.gov/genealogy/www/data/1990surnames/names files.html

Experimental Results

- Public Annotated Dataset of 10K Twitter users¹
- 10 Training/Test random splits, each test split with 400 male and 400 female users, rest used for training
- Gender modeling was conducted using SVM with RBF kernel, kernel parameters estimated via grid search

Image/video collection (visual feed) different pooling strategies

Method	Accuracy
Max Pooling	67.53
Avg Pooling	69.43
Avg Top-Quarter Pooling	69.56
Threshold-count	70.82
Avg Prediction Pooling	71.38

Individual Performance of Different Approaches

	Method	Accuracy
	Background SMV717	60.11
Visual	Header SMV717	64.41
	color	66.18
	Visual Feed SMV51	66.67
	Visual Feed SMV717	71.38
	Visual Feed SVMDeep1000	75.40
	Profile SMV25	69.11
Text	Profile Face++	74.90
	First Name	71.22
	First Name Frequency	69.58
	LibText 200 Tweets	83.37

Fusion Strategies

Method	Accuracy
Visual Feed Early Fusion	75.58
Visual Feed Late (avg) Fusion	74.34
Visual Feed Late (SVM) Fusion	75.6
Profile Late (avg) Fusion	77.85
Profile Late (SVM) Fusion	78.63
Profile Filtered Fusion	79.05
All Visual Late(SVM) Fusion	80.08
All Visual Late(SVM) Filtered Fusion	83.36
Textual Early Fusion	84.08
Textual Feed Late (avg) Fusion	84.53
Textual Late (SVM) Fusion	84.67
Textual Filtered Fusion	85.72
Visual+Text Early Fusion	84.07
Visual+Text Late (SVM) Fusion	85.97
Visual+Text Late (SVM) Filtered Fusion	88.01

25

1. http://www.networkdynamics.org/static/datasets/LiuRuthsMicrotext.zip

From paper Liu and Ruths, What's in a Name? Using First Names as Features for Gender Inference in Twitter, AAAI 2013

Experimental Results

- Public Annotated Dataset of 10K Twitter users¹
- 10 Training/Test random splits, each test split with 400 male and 400 female users, rest used for training
- Gender modeling was conducted using SVM with RBF kernel, kernel parameters estimated via grid search

*Different splits

Gender Prediction Accuracy

1. http://www.networkdynamics.org/static/datasets/LiuRuthsMicrotext.zip

26

From paper Liu and Ruths, What's in a Name? Using First Names as Features for Gender Inference in Twitter, AAAI 2013

Conclusions and Future Directions

Conclusions

- There is a correlation between the content of images posted on social media and the users' gender, which can be exploited for gender prediction
- Visual and textual information can be combined to boost gender prediction performance
- Not all sources of information are equal. Filtered fusion provides best results.

Future Directions

- Improve/tailor visual classifiers
- Cross media comparisons (Twitter vs Instagram vs Facebook....)
- Use framework to predict other attributes (age, hobbies, life events...)

Questions?

Ah, so that's the age of Ultron.

References

- [BurgerEMNLP11] J. D. Burger, J. Henderson, G. Kim, and G. Zarrella. *Discriminating gender on Twitter*. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2011
- [PennacchiottiICWSM 11] M. Pennacchiotti and A.-M. Popescu. A machine learning approach to twitter user classication. In ICWSM. The AAAI Press, 2011
- [LiuAAAI13] Liu and Ruths. What's in a Name? Using First Names as Features for Gender Inference in Twitter. AAAI 2013
- [AlowibdilCASNAM13] Jalal S. Alowibdi, Ugo A. Buy and Philip Yu. Language Independent Gender Classification on Twitter.
 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
- [ChangCSCW14] S. Chang, V. Kumar, E. Gilbert, and L. Terveen. Specialization, homophily, and gender in a social curation site: Findings from pinterest. In CSCW, 2014
- [ItoASONAM13] J. Ito, T. Hoshide, H. Toda, T. Uchiyama, and K. Nishida. *What is he/she like?: Estimating twitter user attributes from contents and social neighbors*. In Advances in Social Networks Analysis and Mining (ASONAM), 2013
- [LuduCORR14] P. S. Ludu. Inferring gender of a twitter user using celebrities it follows. CoRR, 2014.
- [KokkosFM14] A. Kokkos and T. Tzouramanis. A robust gender inference model for online social networks and its application to linkedin and twitter. First Monday, 19(9), 2014
- [NguyenCOLING14] D. Nguyen, D. Trieschnigg, A. Dogru oz, R. Gravel, M. Theune, T. Meder, and F. de Jong. *Why gender* and age prediction from tweets is hard: Lessons from a crowdsourcing experiment. In Proceedings of COLING, 2014.
- [MalWCMASM14] Xiaojun Ma, Yukihiro Tsuboshita, Noriji Kato. Gender Estimation for SNS User Profiling Automatic Image Annotation. 1st International Workshop on Cross-media Analysis for Social Multimedia, 2014
- [SakakilCCL14] S. Sakaki, Y. Miura, X. Ma, K. Hattori, and T. Ohkuma. Twitter user gender inference using combined analysis of text and image processing. In International Conference on Computational Linguistics, 2014.
- [Totems14] <u>http://totems.co/blog/machine-learning-nodejs-gender-instagram/</u>
- [FarseevICMR15] Aleksandr Farseev, Liqiang Nie, Mohammad Akbari and Tat-Seng Chua, Harvesting Multiple Sources for User Profile Learning: a Big Data Study. In ICMR, 2015