snap eat repEat

 a Food Recognition Engine for Dietary Logging

Michele Merler, Hui Wu, Rosario Uceda-Sosa, Quoc-Bao Nguyen, John R. Smith
IBM TJ Watson Research Center

- Motivation
- System Architecture and Interface
- Image Recognition
- Conclusions and Future Directions
repEat
®
HI

41 (11)

Motivation

- Exercise, sleep and nutrition monitoring is essential for optimizing athletic performance
- Need to reduce friction (manual, inaccurate) to make nutrition monitoring fast and easy
- Visual food recognition greatly simplifies logging of meals using context and content
- Provides accurate tracking of diet and planning nutritional intake for achieving goals

Repeat Foods (e.g., Diet History)

Monday

Tuesday

Friday

Meal Times (e.g., Snack, Dessert)

Breakfast

Lunch

Dinner

Cuisines (e.g., Italian)

Pizza

Pizza

Pizza
repEat
\star

System Architecture and Interface

Snap Meal Photos

Client side

Demo

repEat
\star

Image Recognition

DATA

- Food vs Not-Food Dataset

- Food
- IBM food images
- Tastespotting.com
- Food.com
- Food 101
- Not-Food
- IBM non-food images
- NUS Wide
- SUN
- ImageCLEF medical
- Flickr images
- Training set 2.6 M images
- Test set 660K images
- 43\% Food, 57\% Not-Food

MODEL

- Fine-tuned Binary GoogleNet
- Converged pretty fast
- Picked model at 7 K iteration
- base_Ir: 0.001 - max_iter: 10000000
- Ir_policy: "step" •momentum: 0.9
- stepsize: 320000
- weight_decay: 0.0002
- gamma: 0.96

Food Filtering - Experiments

Food vs NotFood classifier ROC curve on Test set

- UNI-CT Dataset http://iplab.dmi.unict.it/UNICT-FD889/
- 3,583 Positive images of 889 foods (taken in restaurants with mobile)
- 4,804 Positive food images (from Flickr)
- 8,005 Negative images (from Flickr)
- 2 evaluation settings:
- Food889 (positive) vs No-Food (Negative Flickr)
- Food (positive Flickr) vs No-Food (Negative Flickr)
- Baseline: one class SVM from Farinella et al. [14]

Food vs NotFood classifier ROC curve on UNI-CT test

Method	One-Class SVM [14]	Binary Ensemble SVM	Binary Fine-Tuned GoogleNet
Food889 True Positives Rate	0.6543	0.8685	0.9711
Flickr Food True Positives Rate	0.4300	0.6744	0.9417
Flickr No-Food True Negative Rate	0.9444	0.9589	0.9817
Overall Accuracy	0.9202	0.9513	0.9808

[14] G. M. Farinella, D. Allegra, F. Stanco, and S. Battiato. On the exploitation of one class classification to distinguish food vs non-food images. In New Trends in Image Analysis and Processing ICIAP MaDiMa Workshop, 2015.

- In 2010, 85k different products were identified in US food chains ${ }^{1}$
- Most nutrition databases glean data from USDA, manufacturers and restaurant chains. Commercial database sizes range from 10 k to 700k, but size is deceptive and too many options make logging food almost impossible
- Some databases are NOT curated (they include duplicates, unverified user entries, multiple entries per different portions of the same item, etc.). Most scientific, curated, comprehensive databases have 50k-80k entries
- Nutritionix ${ }^{2}$ is the largest curated database, with 620 k entries ('Spaghetti Marinara’ produces over 3000 matches!)

Approx size (US) Sample sources of data

1. Weng Ng, Popkin: "Monitoring foods and nutrients sold and consumed in the United States: Dynamics and Challenges", http://www.ncbi.nIm.nih.gov/pmc/articles/PMC3289966/
2. https://www.nutritionix.com/

Food in

 the wild- Food-101 [7]
- 101 classes
- 1,000 images per class
- Food 500 (ours)
- 508 classes
- 290 images per class
- 6-Chain (ours)
- ~ 50 classes / chain
- ~10 image / class
- Images from Applebee's, Denny's, Olive Garden, Panera Bread, and TGI Fridays

Food in context	6-Chain (ours) ~ 50 classes / chain \cdot ~ 10 image / class - Images from Applebee's, Denny's, Olive Garden, Panera Bread, and TGI Fridays

- Random splits: 75% for training, 25% for testing
- Evaluation metric: Fine-grained classification accuracy

Food-101 Images

6-Chain Images

- Performance of Deep Learning Food Recognition Models on Restaurant Chains food
- Each Restaurant chain is evaluated independently

K-NN: based on fc7 features from AlexNet [26]
\square AlexNet: finetuned on restaurant chain training set
\square GoogLeNet [36] : finetuned on Restaurant chains training set, similar to im2calories [30]
\square GoogLeNet $_{\text {Food }}$: two finetuning steps, first n subset of Food vs Not-food dataset, then Restaurant chains training set

Restaurant	\# Classes	\# Images	\# Images per class
Applebee's	50	405	8
Au Bon Pain	43	146	3
Denny's	56	325	6
Olive Garden	55	457	8
Panera Bread	79	2,267	28
TGI Fridays	54	432	8

- Performance of Deep Learning Food Recognition Models on Restaurant Chains food
- Each Restaurant chain is evaluated independently

K-NN: based on fc7 features from AlexNet [26]
\square AlexNet: finetuned on restaurant chain training set
\square GoogLeNet [36] : finetuned on Restaurant chains training set, similar to im2calories [30]
\square GoogLeNet $_{\text {Food }}$: two finetuning steps, first n subset of Food vs Not-food dataset, then Restaurant chains training set

Restaurant	\# Classes	\# Images	\# Images per class
Applebee's	50	405	8
Au Bon Pain	43	146	3
Denny's	56	325	6
Olive Garden	55	457	8
Panera Bread	79	2,267	28
TGI Fridays	54	432	8

- Most recognition errors result from visually similar dish items in the same category
- E.g., even if the system fails to recognize the specific type of soup, it still recognizes that it is a soup
- Idea*: incorporate hierarchical taxonomic information in learning process

Item: triple bacon burger
Estimated: mushroom swiss burger Category: Burger

Item: strawberry fields salad Estimated: Yucatan Chicken Salad Category: Salad

Item: black bean soup Estimated: turkey chili Category: Soup

Item: sesame seed bagel Estimated: everything bagel

Category: Bagel

- Building a large-scale food image database
- Enables accurate food visual recognition and nutrition logging in real world settings

Web and Social Media
Crawling

"bacon"

Unnecessary images removal

- Duplicates shat en as
- Empty images
- Small images

Crowdsourced human verifications

Comparison to existing datasets

	Dataset	Number of Classes	Number of Images/Class	Number of Images	Food Ontology
\sum	UEC Food 256 [22]	256	89	31,651	None
$\stackrel{\square}{1}$	Geolocalized [40]	3,852	30	117,504	None
-	Food-101 [7]	101	1000	101,100	None
2	ETHZ Food 101 [37]	101	1000	101,100	None
\sum	Food 500	508	290	148,408	Yes
\pm	Food 3,000 (ongoing)	3000	500	1.5 M	Yes

Model: GoogleNet pretrained on Imagenet and finetuned on given dataset

Dataset	Accuracy (top 1)
Food 101 [Martinel ICCV15]	79
Food 101 (ours)	69.64
Food 500 (ours)	40.37

Worst Categories

$0 \quad 0.020 .040 .060 .08$ Accuracy

Creole rice

Jambalaya

Rogan josh

Roast beef

Peanut butter

Pastrami

Best Categories

Conclusions

LESSONS LEARNED

- Created end-to-end food recognition API that can recognize pictures of food in restaurants and "in the wild"
- Tested state of the art on largest food image dataset with ${ }^{\sim} 150 \mathrm{~K}$ images of 500 food categories organized in a hierarchical taxonomy
- Context matters
- Amount and quality of training images matter

FUTURE DIRECTIONS

- More data
- expand "wild" dataset to 1-3K categories and 1-2M images
- expand Restaurant chains dataset by adding more restaurants
- Food portion estimation "in the wild" will require food segmentation, depth and volume estimation
- Incorporate other types of context (diet history, meal time, local cuisine)

Check out our related work!

Hui Wu, Michele Merler, Rosario Uceda-Sosa, John Smith
Learning to Make Better Mistakes: Semantics-aware Visual Food Recognition ACM Multimedia Poster Session - Monday Oct 17 ${ }^{\text {th }} 14.00$ - 17.00

Questions?

