

a Food Recognition Engine for Dietary Logging

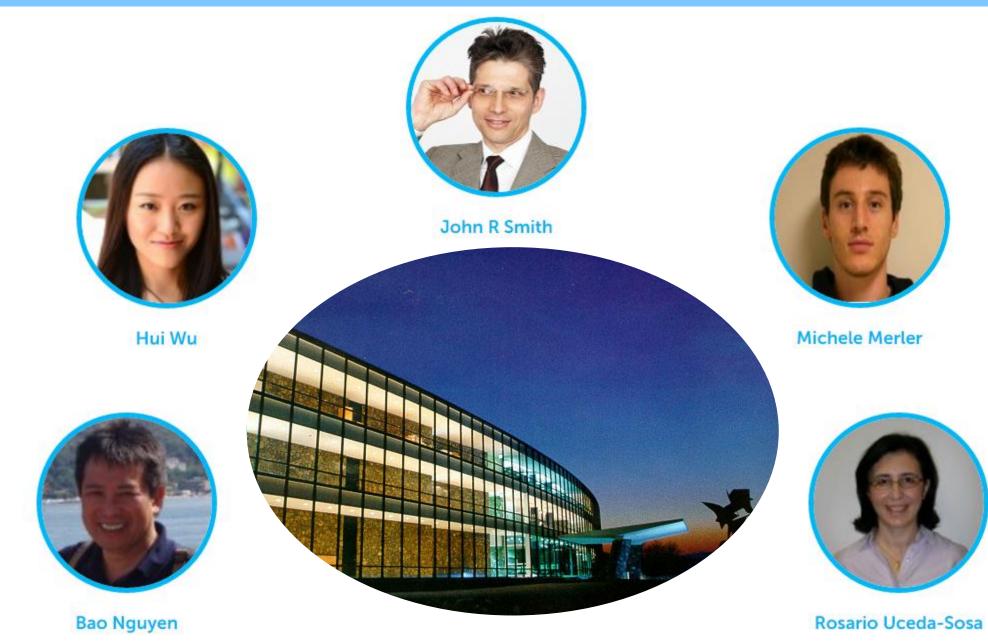
Michele Merler, Hui Wu, Rosario Uceda-Sosa, Quoc-Bao Nguyen, John R. Smith

IBM TJ Watson Research Center

MADiMa2016

2nd International Workshop on Multimedia Assisted Dietary Management @ACM MM 2016

Food Visual Recognition Team



IBM TJ Watson Research Center - New York, USA

Motivation

• System Architecture and Interface

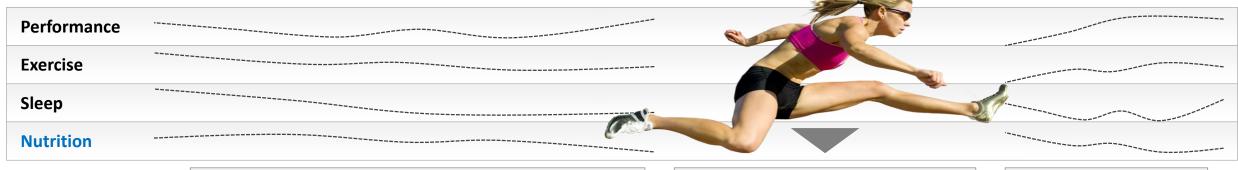
• Image Recognition

• Conclusions and Future Directions

Motivation

Food Visual Recognition for Computer-Assisted Nutrition Logging

- Exercise, sleep and nutrition monitoring is essential for optimizing athletic performance
- Need to reduce friction (manual, inaccurate) to make nutrition monitoring fast and easy
- Visual food recognition greatly simplifies logging of meals using context and content
- Provides accurate tracking of diet and planning nutritional intake for achieving goals



History

Logging

Planning

Watson Vision

- Photo
 - Text

Content:

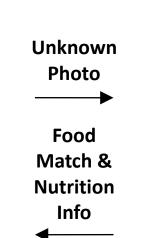
Context:

Geo-Location

Restaurant name Historical meals

• Time of day

Interaction



Food matching:

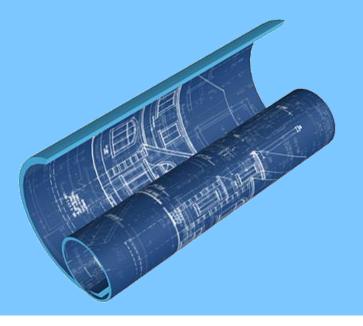
- Fast, accurate
- Multi-modal
- Scalable

Food database:

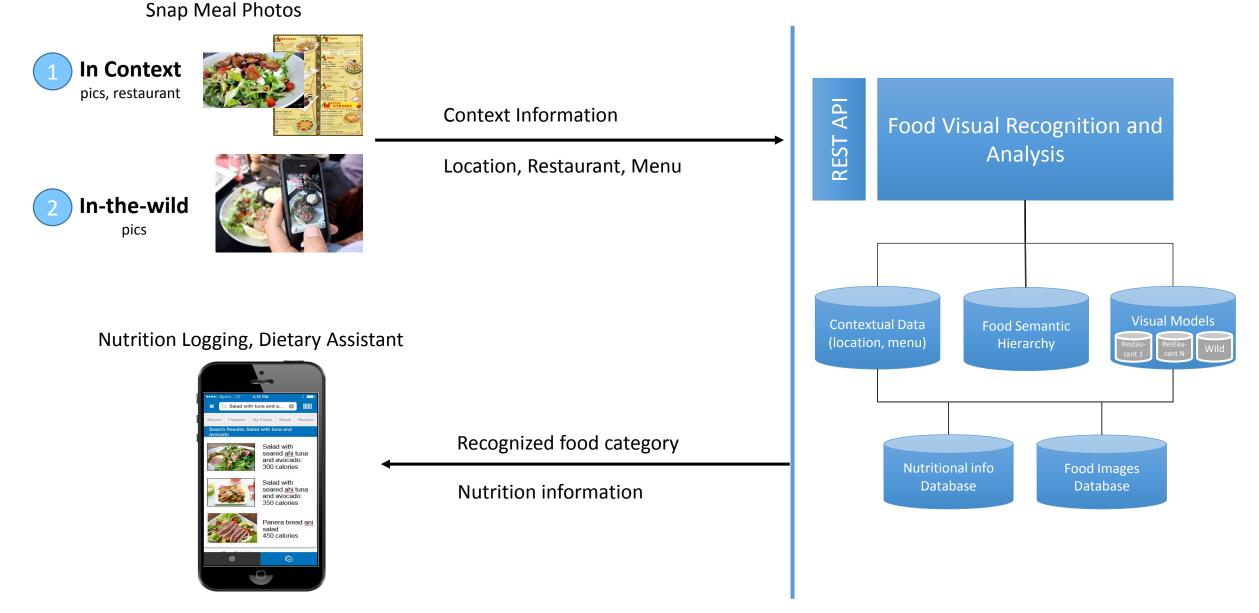
- Food photos
- Nutrition info
- Menus
- User data

Leveraging Context for improving Food Recognition Accuracy

System Architecture and Interface



System Architecture



Client side

Server side

MADiMa2016

Image Recognition

MADiMa2016

DATA

- Food vs Not-Food Dataset
 - Food
 - IBM food images _
- UEC Food 256
- Tastespotting.com _
- Food 10K _ UPMC Food101

Food.com _ Food 101

PFID

Not-Food

_

- IBM non-food images _
- NUS Wide _
- SUN _
- ImageCLEF medical _
- Flickr images
- Training set 2.6M images
- Test set 660K images
- 43% Food, 57% Not-Food

MODEL

- Fine-tuned Binary GoogleNet
- Converged pretty fast
- Picked model at 7K iteration
- base_lr: 0.001
- Ir policy: "step"
- stepsize: 320000

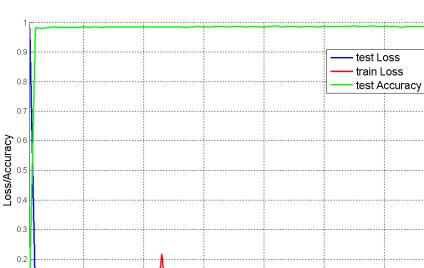
x: 7000 1: 0.0069

• gamma: 0.96

• max_iter: 10000000

= (| = | () = | () =

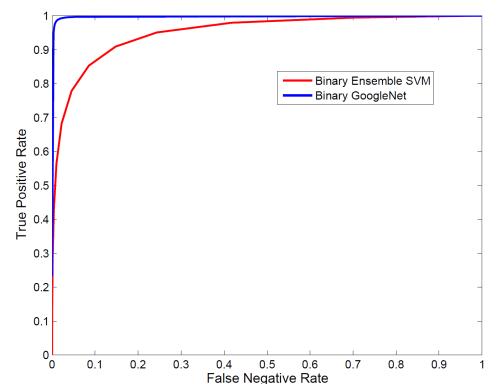
- momentum: 0.9
- weight_decay: 0.0002



Iteration

× 10⁴

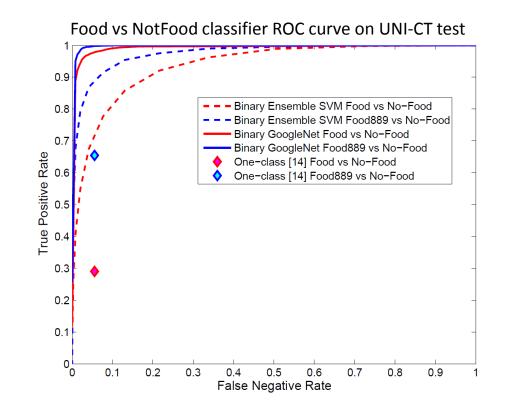
- Test set 660K images
 - 43% food
 - 57% not food
- Baseline: Ensemble SVM Food vs NotFood classifier
 - Best accuracy at 88.77% with t=0.45
- Binary GoogleNet has **98.95%** accuracy with t=0.55



Food vs NotFood classifier ROC curve on Test set

Food Filtering - Experiments

- UNI-CT Dataset http://iplab.dmi.unict.it/UNICT-FD889/
 - 3,583 Positive images of 889 foods (taken in restaurants with mobile)
 - 4,804 Positive food images (from Flickr)
 - 8,005 Negative images (from Flickr)
- 2 evaluation settings:
 - Food889 (positive) vs No-Food (Negative Flickr)
 - Food (positive Flickr) vs No-Food (Negative Flickr)
- Baseline: one class SVM from Farinella et al. [14]

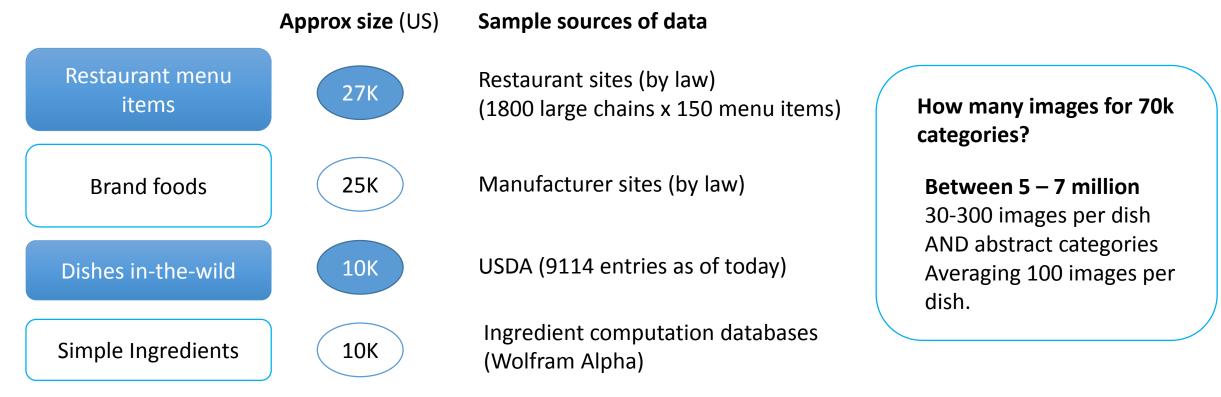


Method	One-Class SVM [14]	Binary Ensemble SVM	Binary Fine-Tuned GoogleNet
Food889 True Positives Rate	0.6543	0.8685	0.9711
Flickr Food True Positives Rate	0.4300	0.6744	0.9417
Flickr No-Food True Negative Rate	0.9444	0.9589	0.9817
Overall Accuracy	0.9202	0.9513	0.9808

[14] G. M. Farinella, D. Allegra, F. Stanco, and S. Battiato. On the exploitation of one class classification to distinguish food vs non-food images. In New Trends in Image Analysis and Processing ICIAP MaDiMa Workshop, 2015.

How many foods need to be distinguished?

- In 2010, 85k different products were identified in US food chains¹
- Most nutrition databases glean data from USDA, manufacturers and restaurant chains. Commercial database sizes range from 10k to 700k, but size is deceptive and too many options make logging food almost impossible
- Some databases are NOT curated (they include duplicates, unverified user entries, multiple entries per different portions of the same item, etc.). Most scientific, curated, comprehensive databases have 50k-80k entries
- Nutritionix² is the largest curated database, with 620k entries ('Spaghetti Marinara' produces over 3000 matches!)



1. Weng Ng, Popkin: "Monitoring foods and nutrients sold and consumed in the United States: Dynamics and Challenges", <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289966/</u> 2. https://www.nutritionix.com/

Food Recognition : Evaluation Datasets

Food in the wild

- Food-101 [7]
 - 101 classes
 - 1,000 images per class
- Food 500 (ours)
 - 508 classes
 - 290 images per class

Food-101 Images

- Food in context
- 6-Chain (ours)
 - ~ 50 classes / chain
 - ~10 image / class
 - Images from Applebee's, Denny's, Olive Garden, Panera Bread, and TGI Fridays
- Random splits: 75% for training, 25% for testing
- Evaluation metric: Fine-grained classification accuracy

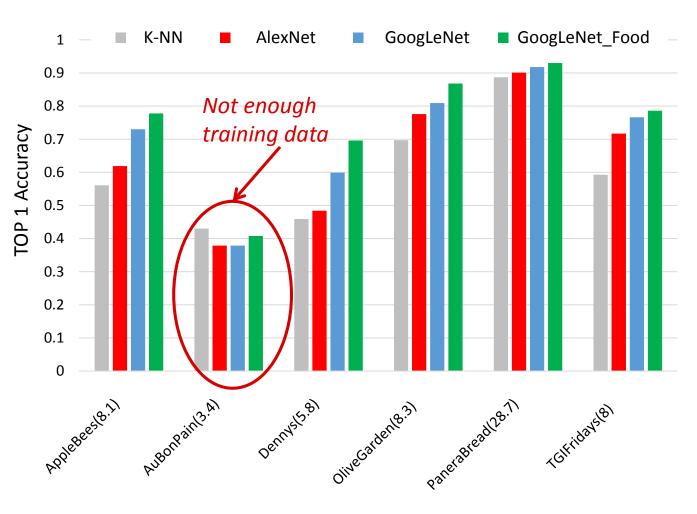
6-Chain Images

Context-based Food Recognition (top 1 accuracy)

= 11 = 11) 11 = 11

- Performance of Deep Learning Food Recognition Models on Restaurant Chains food
- Each Restaurant chain is evaluated independently
 - K-NN: based on fc7 features from AlexNet [26]
- AlexNet: finetuned on restaurant chain training set
- **GoogLeNet [36]** : finetuned on Restaurant chains training set, similar to im2calories [30]
- **GoogLeNet**_{Food}: two finetuning steps, first n subset of Food vs Not-food dataset, then Restaurant chains training set

Restaurant	# Classes	# Images	# Images per class
Applebee's	50	405	8
Au Bon Pain	43	146	3
Denny's	56	325	6
Olive Garden	55	457	8
Panera Bread	79	2,267	28
TGI Fridays	54	432	8



Restaurant Chain (number of images per item)

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. *NIPS* 2012

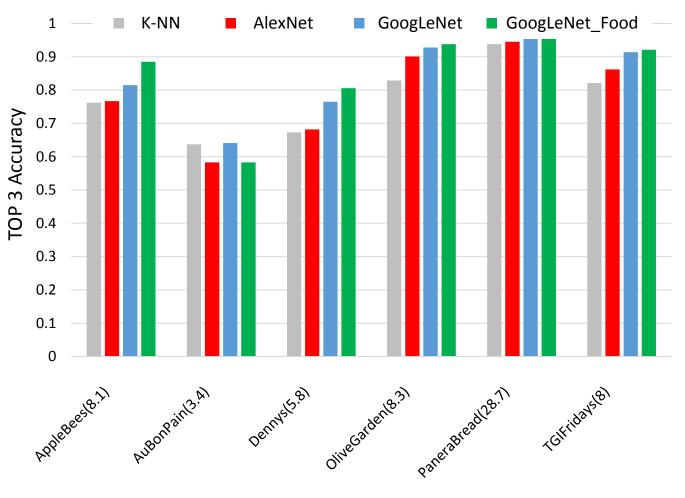
[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. CVPR 2015

[30] A. Myers, N. Johnston, V. Rathod, A. Korattikara, A. Gorban, N. Silberman, S. Guadarrama, G. Papandreou, J. Huang, and K. Murphy. Im2calories: towards an automated mobile vision food diary. ICCV 2015

Context-based Food Recognition (top 3 accuracy)

- Performance of Deep Learning Food Recognition Models on Restaurant Chains food
- Each Restaurant chain is evaluated independently
 - K-NN: based on fc7 features from AlexNet [26]
- AlexNet: finetuned on restaurant chain training set
- **GoogLeNet [36]** : finetuned on Restaurant chains training set, similar to im2calories [30]
- **GoogLeNet**_{Food}: two finetuning steps, first n subset of Food vs Not-food dataset, then Restaurant chains training set

Restaurant	# Classes	# Images	# Images per class
Applebee's	50	405	8
Au Bon Pain	43	146	3
Denny's	56	325	6
Olive Garden	55	457	8
Panera Bread	79	2,267	28
TGI Fridays	54	432	8



Restaurant Chain (number of images per item)

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. *NIPS* 2012

[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. CVPR 2015

[30] A. Myers, N. Johnston, V. Rathod, A. Korattikara, A. Gorban, N. Silberman, S. Guadarrama, G. Papandreou, J. Huang, and K. Murphy. Im2calories: towards an automated mobile vision food diary. ICCV 2015

Context-based Food Recognition (Category level accuracy)

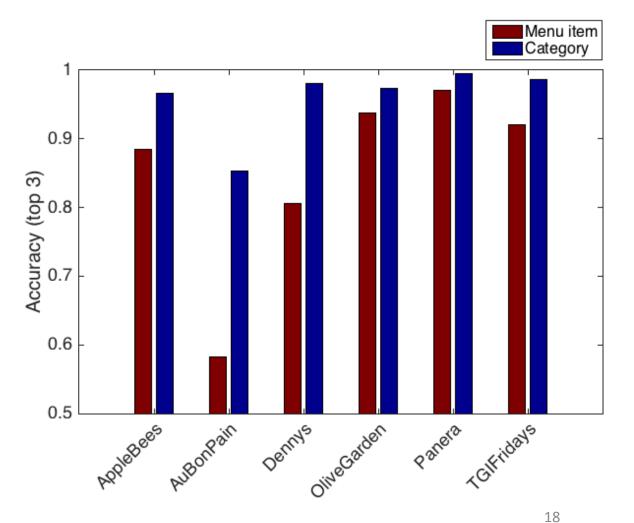
- Most recognition errors result from visually similar dish items in the same category
- E.g., even if the system fails to recognize the specific type of soup, it still recognizes that it is a soup
- Idea*: incorporate hierarchical taxonomic information in learning process

Item: triple bacon burger Estimated: mushroom swiss burger Category: Burger

Item: strawberry fields salad Estimated: Yucatan Chicken Salad Category: Salad

Item: black bean soup Estimated: turkey chili Category: Soup

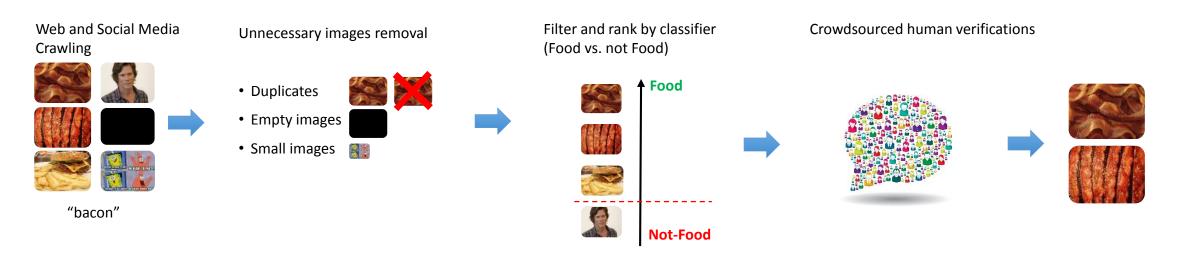
Item: sesame seed bagel Estimated: everything bagel Category: Bagel



* Hui Wu, Michele Merler, Rosario Uceda-Sosa, John Smith, Learning to Make Better Mistakes: Semantics-aware Visual Food Recognition. ACM Multimedia 2016

Food "in the wild" Dataset Curation

- Building a large-scale food image database
- Enables accurate food visual recognition and nutrition logging in real world settings



Comparison to existing datasets

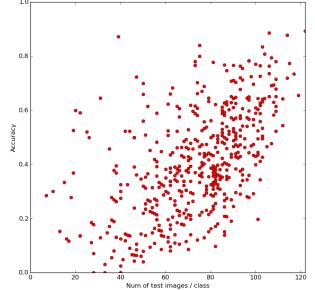


	Dataset	Number of Classes	Number of Images/Class	Number of Images	Food Ontology
	UEC Food 256 [22]	256	89	31,651	None
-	Geolocalized [40]	3,852	30	117,504	None
5	Food-101 [7]	101	1000	101,100	None
	ETHZ Food 101 [37]	101	1000	101,100	None
	Food 500	508	290	148,408	Yes
	Food 3,000 (ongoing)	3000	500	1.5M	Yes

500 Foods "in the wild" Classification

Model: GoogleNet pretrained on Imagenet and finetuned on given dataset

Dataset	Accuracy (top 1)
Food 101 [Martinel ICCV15]	79
Food 101 (ours)	69.64
Food 500 (ours)	40.37



Worst Categories

snack_cake sour_cream creole_rice roast beef ice cream cake pork_and_beans peanut_butter chorizo royal beef roasted_garlic 0 0.02 0.04 0.06 0.08

Accuracy

Creole rice

Beef vindaloo Rogan josh

Jambalaya

Roast beef

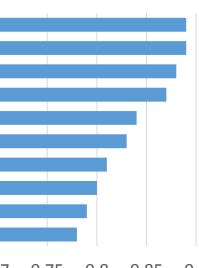
Peanut butter

Fudge

Pastrami

Best Categories

gulab_jaamun matzo_soup deviled egg fruit_loops_cereal jelly bean raw oysters spaghetti_alla_putta... tipsy_cake toaster_strudel lobster roll



0.85 0.9 0.7 0.75 0.8 Accuracy

Conclusions

- Created end-to-end food recognition API that can recognize pictures of food in restaurants and "in the wild"
- Tested state of the art on largest food image dataset with ~150K images of 500 food categories organized in a hierarchical taxonomy
- Context matters
- Amount and quality of training images matter

FUTURE DIRECTIONS

- More data
 - expand "wild" dataset to 1-3K categories and 1-2M images
 - expand Restaurant chains dataset by adding more restaurants
- Food portion estimation "in the wild" will require food segmentation, depth and volume estimation
- Incorporate other types of context (diet history, meal time, local cuisine)

Check out our related work!

Hui Wu, Michele Merler, Rosario Uceda-Sosa, John Smith Learning to Make Better Mistakes: Semantics-aware Visual Food Recognition ACM Multimedia Poster Session – Monday Oct 17th 14.00 – 17.00

Questions?

